1

 

Ukens formel kommer på søndag, og grunnen til det er rett og slett det at den siste uken har vært fryktelig travel, med å forberede leiligheten (jada, boring, med så mye mas om dette, still true, though) - på toppen av alt måtte jeg plutselig hive meg rundt og rydde kalenderen fri på torsdag og fredag for å filme med Telia. Og det er grunnen til at jeg ikke fikk til formelfredag på fredag, og at det kommer i dag istedetfor - please forgive me (og tusen tusen takk til de fine nuktek-studentene som syntes det var helt greit å flytte forelesningen sin fra fredag 10-12 til mandag 8-10, selv om det kjennes som om vi skal møtes alt for tidlig i morgen akkurat nå 😛 ) ♥

- oppskrift -

Ok! Ukens formel gikk jeg igjennom da jeg foreleste nukleær teknologi nå på onsdag, og det er formelen for tettheten av nøytroner i en reaktor. Nøytroner er jo veldig viktige, fordi det er de som får alt til å skje i reaktoren... Formelen ser sånn ut:

- hva det betyr -

n står for nøytroner - hvor mange man har. Først, på den venstre siden av er lik-tegnet står det n(t) (som man leser som n av t), som betyr at antall nøytroner kan komme til å forandre seg når tiden går - så det er altså ikke like mange nøytroner hele tiden. På høyre siden står det \(n_0\) (som man leser som n null), som betyr så mange nøytroner man har liksom til å begynne med.

k er kritikalitetsverdien til reaktoren, som var den jeg snakket om i forrige formelfredag.

1 er tallet 1;)

t er tid, og måles i sekunder (tid måles alltid i sekunder i fysikk-formler - som jeg nevnte i s=vt-innlegget).

l er gjennomsnittlig levetid for et nøytron - som her betyr hvor lang tid tar det fra et nøytron blir "født" i en fisjon til det er spist opp - enten i en kjerne som fisjonerer igjen, eller i en eller annen annen reaksjon, i en kjerne som ikke fisjonerer

 

- fremgangsmåte -

hvis k = 1 så spiller det ingen rolle hva t eller l er, for da blir det uansett \(e^0\) som er lik 1, og \(n(t)=n_0\) - dette betyr at antall nøytroner er konstant, hele tiden lik det det var da vi begynte. Som jo er det man ønsker 🙂

Men, hvis det er en bitte liten endring, feks at k blir 1.001 istedetfor 1 - hva kan det egentlig ha å si?

Hvis \(n_0\) er 1000 og l=0.084 sekunder (det er typisk sånn det er i en godt designet standard reaktor), og vi vil se hvor mange nøytroner det er etter ett sekund blir \(n(1) = 1000\cdot e^{ (1.001-1)\cdot\big(\frac{1}{0.084}\big)} = 1012.\)

Dette betyr at hvis reaktoren har en effekt på 1 megawatt, og det da er denne lille fornadringen i kritikalitet (k), så går effekten opp til 1.012 megawatt på ett sekund, og det er helt uproblematisk og fint og flott. Det er sånn skal det være en normal, godt designet reaktor...

I Tsjernobyl var ting litt annerledes; den var jo ikke så veldig godt designet (med mindre hovedmålet ditt var å produsere våpenplutonium, og sikkerheten til de som jobbet der ikke var så kjempeviktig - da var den KJEMPEBRA designet). I Tsjernobyl-reaktoren var det nemlig sånn at l ble ganske mye mindre enn 0.084 sekunder. Der var gjennomsnittlig levetid for nøytronene nemlig 0.0001 sekunder, og da blir ting litt annerledes: da øker nemlig antall nøytroner med ca 22000 ganger på ett sekund, og effekten går fra 1 megawatt til 22000 megawatt på samme tid. Ja, du gjetter riktig; den økningen er eksplosiv :/


Nå skal jeg bare tømme (det nesten tomme) vinglasset mitt, så er det kvelden på meg her i alle fall. Siden jeg skal forelese klokken 8 i morgen så holder det ikke bare å faktisk være oppe og på plass - jeg bør liksom være uthvilt og  i tillegg...hashtag foreleserliv, liksom.

God natt ♥

 

2

Today is a beautiful Tuesday here in Oslo, and I just have to say a little bit about the safety of a nuclear power plant! I want to share an excerpt of a text written by someone that knows more about this particular theme than I do - Gianni Petrangeli, who has written the textbook Nuclear Safety (I have highlighted some of the points):

"Is it possible to conclude that a nuclear power plant is safe and, if it is, what are the conditions which make this conclusion possible?
The answer to the first question is: 'Yes, it is possible'. 

The conditions for such a conclusion to be valid are:

  1. the plant has been built within a legal framework that provides for the regulation of nuclear activities and for the clear assignment of safety responsibilities
  2. the plant site has been chosen by a competent organization, following the stringent safety and radiation protection criteria internationally available
  3. the plant has been conceived, designed and built following the best internationally available criteria and standards important for safety and for radiation protection (with all financial means necessary to obtain an excellent result)
  4. the  whole process has been submitted to the surveillance of an independent control body, capable (as far as possible) of foreseeing the possible technical licensing problems before it's too late to solve them
  5. everyone involved in the construction, the control and the operation of the plant are permeated by a genuine safety culture
  6. everyone involved have been trained to the best professional standards with continuing professional development schemes
  7. operation is performed in connection with national and international organizations which have the aim of collecting and disseminating operating experience thoroughly and quickly
  8. the plant is operated within an industrial system with a sufficient reserve of electric power 
  9. working conditions for plant operators are conducive to solving problems, and the psychological atmosphere in the plant is marked by alacrity and by serenity at the same time"
----------------------------------------------------------------------------

When all of these nine criteria are met (I shortened some of them, so in the original text they are more comprehensive), then you can claim that a nuclear power plant is safe.

Was Chernobyl "safe"? NO, NOT AT ALL! I know for sure that Chernobyl broke the conditions, and definitely could not be concluded to be a "safe" plant.

Was Fukushima "safe"? To be honest, I'm actually not 100% sure of how well Fukushima met these 9 criteria...
The thing about the Fukushima accident was that it was caused by a "freak event" - a natural disaster that magnitude is very hard to foresee, since you can't foresee everything. If you could, none would have died from the earth quake and tsunami that hit Japan on the 11th of March 2011, but yet they did - but if you argue that since this natural disaster did happen, and therefore nuclear power isn't safe, you're really also arguing that Japan is an unsafe country to live in...
It's not like they din't foresee tsunamis on the coast of Japan, but they didn't expect them to be as big. So what if they had foreseen a 14 meter tsunami, and they were protected against that, but then a 15 meter tsunami hit them instead? Nothing is ever (100%) safe, and at some point you have to say this is as safe as it gets. Remember: it's always a piece of cake to say after something's happened that they should have done it differently...! 
But was Fukushima as safe as it gets? Maybe not. Maybe the plant site (point 2) wasn't 100% ideal, maybe the plant didn't have sufficient reserve of electric power (point 8). Can we then conclude that nuclear power isn't safe at all? No.

------------------------------------------------------------------------------

Have a fabulous, sunny day everyone! I'm going to get Alexandra in kindergarden very soon, and then we're going to get our nails done #motherdaughtertime <3


7

Since it was 30 years since the Chernobyl accident on Tuesday, I was thinking it would be a good idea with 10 facts related to that as a little "comeback" of Friday Facts (so sorry that I don't manage to make these facts every week, it's just that lately I've either been travelling, or really busy with my PhD, which I sort of have to prioritize sometimes 😉 ). Or, not just ten facts, but ten differences between the Chernobyl type RBMK reactor ("reaktor bolshoy moshchnosty kanalny", meaning high-power channel reactor), and the standard pressurized water reactor (PWR). 
Ready? 
Let's go!
  1. PWR is the most common type of reactor in the world operated in countries like USA,  Belgium, Brazil, China, Finland, France, Germany, India, Japan (the Fuksuhima reactor was not a PWR, though), Russia, Spain, and Sweden, and several more. The RBMK was a Soviet develloped design - only built in the former Soviet Union.
  2. the PWR uses water as both moderator (for slowing down all the neutrons from really high energies, to really low energy - which is what we want <3 ) and as cooling medium, but the RBMK uses graphite as moderator, and water as cooling medium. Normally we say that the PWR is light water (light water is what we normally just call "water", instead of heavy water) moderated and cooled, and the RBMK is graphite moderated and light water cooled.
  3. the RBMK was designed with a positive void coefficient; I'll don't go in detail on that now (if you want me to, I can make a separate blogpost about what this means), but in short it is the reason why the RBMK is unstable under certain conditions
  4. the tip of the control rods of the RBMK actually didn't control the reactor/absorb the neutrons -it was made out of graphite that speeds up the fission process, instead of a material that actually shuts it down
  5. the control rods of the RBMK could be withdrawn completely from the reactor - even if it wasn't allowed (no one should EVER be able to overrun safety systems, like it was done the night of the accident)
  6. it took almost half a minute to insert the control rods into the RBMK reactor; on a PWR it takes around a second or so
  7. a PWR needs fuel which is enriched to 5% uranium-235, but the RBMK only needed 2% - so it was economical with the fuel
  8. the RBMK could have its fuel changed while it was running. This, together with the low enrichment (no 7) made it ideal as a producer of weapons plutonium 
  9. a PWR is passively safe, but the RBMK definitely wasn't
  10. the Chernobyl reactor didn't have any outer barrier; meaning the reactor was placed more or less in a warehouse rather than a full containment building. Therefore, when the reactor actually exploded, the radioactive inside of it could get out, and fresh air (oxygen...!) could get in, making a strong fire that lasted for days

These are just the first ten big differences I could think of, but there are even more. 
When I, or other nuclear scientists, say that Chernobyl could never happen in a modern, Western reactor, it's not because we just don't want to see reality or something silly like that, but it's because of these facts listet above - which makes that accident physically impossible in, for example a PWR...!
testing of reactor grade concrete - the concrete stays intact, as the plane is just disintegrated (plane vs concrete: plane 0, concrete 1)
PS: There are still some RBMKs operating in the world today, but major modifications have been made to these reactors.

Only nine days left to christmas. No christmas shopping for me yet; I'm spending all of today and tomorrow and Thursday writing writing and writing - I. WANT. TO. GET. A. REAL. DRAFT. OF. MY. PAPER. BEFORE. CHRISTMAS. - but maybe there'll be time for some christmas preparations on Friday...:)
Some of you probably still have an exam (or two?!?) left, and to all of you: A big good luck! I'm at the University Library right now, and from the number of people here, there are obviously a lot of students that are not finished with their exams just yet.
Since it's the 15th today, there are two things from nuclear history I want to share:

1) On this day, in 2000, the reactor number 3 of the Chernobyl nuclear power plant was shut down for good. Yes, you got it right; Chernobyl wasn't closed after the accident in 1986 - the reactor number 4, where the accident happened, was of course shut down (it was completely destroyed), but the other reactors continued to operate. Reactor number 1 ran until 1997, number 2 until 1991, and number 3 until 15th of December 2000. (Read more about the shutdown of the Chernobyl NPP HERE)



2) Today is also the birthday of Henri Bequerel - the discoverer (together with Marie and Pierre Curie) of radioactivity. He got the Nobel Prize in physics for this discovery, in 1903, just five years before he died. It was just an accident that he, in 1897, actually discovered that uranium salts emit some kind of radiation - a penetrating type of radiation that could be registered on a photographic plate. Bequerel wanted to, and first thought that he was studying a type of X-rays, but the radiation that came from the uranium salts turned out to be the new phenomenon called radioactivity 🙂 (If was actually spontanious radioactivity that he discovered; radioactivity can also be induced - if a material is bombarded with for example neutrons it can become radioactive, and this discovery was done by Irène Curie and Frédéric Joliot-Cuire.





3

Altså, det er bare såååå sinnsyyykt mye rimsopp i skogen nå...! I dag var Alexandra, Joachim, Lise og jeg en tur ved Sognsvann for å se om vi fant noe sopp: Vi gikk typ ti minutter fra kiosken ved Sognsvann (siden vi var sammen med Alexandra, tenkte vi at det ble masete å gå for langt) - men regnet da ikke egentlig med å finne noe spiselig sopp. Vi tok feil. Vi fant. Så. Mye. (Hadde ikke vekt da vi kom hjem til Rose-slottet, men da Joachim veide den rensede soppen da han kom hjem var det 3.55 kg rimsopp, pluss 170 gram andre ting - noe ble også igjen her hos Alexandra og meg.) Vi plukket sikkert aktivt i kun en time...
Det var det også andre som gjorde, og jeg overhørte en som sa noe sånn som at "åååh, bare jeg kunne spise mye av dette, men man skal vel ikke spise mer enn et måltid i uken". Det er når jeg hører den typen utsagn at jeg blir trist 🙁 Jeg skjønte jo hva hun antageligvis siktet til - radioaktivitet i sopp; så jeg sa til henne at jeg hadde hørt hva hun sa og at hun kunne spise soppen med god samvittighet 🙂

Sånt blir jeg bare så oppgitt og irritert av - altså, ikke at hun tror, og sier det hun gjør - men at hun har fått servert informasjon som gjør at hun er redd for å spise soppen hun finner i skogen 🙁

Saken er jo den at Norge ble "hardt rammet" av nedfallet etter Tsjernobylulykken for 28 år siden, og det regnet ned stoffer som feks cesium. Cesium-137 har en halveringstid på 30 år, så det betyr jo at nå er det ca halvparten så mye cesium-137 i norsk natur som det var i 1986. Så er det også sånn at cesium tas opp i sopp, og spesielt i noen sopparter - som feks rimsopp; så det blir mer cesium (radioaktivt eller ikke radioaktivt - det spiller ingen rolle) i rimsopp enn feks kantareller. På denne måten blir soppen (både rimsopp og kantarell og andre - men rimsoppen mer enn de fleste andre) radioaktiv. Eller, dvs, mer radioaktiv enn det den allerede er, da - for den er jo radioaktiv også uten å ha tatt opp radioaktivt cesium; sånn som vi feks er radioaktive uansett hva vi har fått i oss - det er jo rett og seltt helt naturlig 😉
Uansett: for det første så var det ikke Oslo som fikk noe særlig av det nedfallet i april 1986 (det regnet ned mest over Nord-Trøndelag, Oppland og Hedmark), og for det andre så er det allikevel snakk om SMÅ mengder. Med den kunnskapen jeg har ville det faktisk ikke en gang falle med inn å tenke på at jeg ikke skulle spise rimsopp (eller at jeg måtte passe meg, og spise små mengder av det) selv om den var plukket på i Nord-Trøndelag, eller hvor det nå regnet ned mest cesium.
Seriøst: gå ut i skogen, plukk sopp og spis så mye du vil <3<3<3

FOR et vær - For en helg <3

I går var planen å skrive et innlegg for dere om Tsjernobyl-ulykken - men jeg tar det egentlig for gitt at ALLE forstår at man ikke kan prioritere å sitte inne og skrive blogg når aprilhelgen plutselig er som den har vært denne helgen; så vi kan vel si det sånn at gårsdagens innlegg rett og slett smeltet bort 😉 
Dette har vært Alexandra-helg, og vi har bare kost oss fra helgen startet fredag ettermiddag til hun la seg for et par timer siden: Fredag gikk vi fra barnehagen og til Frogneparken, der Alexandra lekte i Frognerborgen (verdens beste lekeplass - av sånne "vanlige" lekeplasser?), mens jeg satt og leste en sitatsjekk *multitasking*. Lørdag var jo været helt upåklagelig, og etter en laaang morgen, med kos i sengen, kaffe, og Lotta i Bråkmakergata på DVD, tok vi en tur rett utenfor døren - til Frognerbekken, deretter ble det det is  på liten og en enorm kaffe for stor, og rolig rusling i gatene på Frogner, mens vi (eller, egentlig Alexandra) plukket så å si alle blomster (Løvetann) vi kom over, før vi helt spontant dro til mamma og pappa i Skedsmo. Der ble det grilling og vin, og seeen kveld (ni) for Alexandra, som fikk være ute og leke på lekeplassen, hvinende og barbeint <3
I dag ble det rolig morgen i hagen hos mamma, før vi satte nesen om Charlotte og Andres og deres søte Kristiane i Lillestrøm - det har blitt mer is, latte barbeinte barneføtter, barnelatter og SOL. Nå sitter jeg omsider i sofaen hjemme i Rose-slottet, med nyvasket hår og Mange tanker rundt den kommende uken; det var på et vis først i dag det virkelig gikk opp for meg at jeg er i Japan om bare noen dager - herregud som jeg gleder meg!
-------------------------------------
Så til den saken som ideelt sett skulle ha vært skrevet i går: I går var det 26. april - altså 28 år siden tidenes verste kjernekraftulykke, Tsjernobylulykken. De som har fulgt bloggen en stund vet at jeg har skrevet en god del om denne ulykken før (og jeg tror Tsjernobyl er med i absolutt alle foredrag jeg holder - selv de som handler om motivasjon og å ikke gi opp og sånn), men jeg syns alltid det er på sin plass å reposte denne "hva var det som skjedde"-teksten fra ulykkesnatten i Sovjet for 28 år siden...
Bakgrunnsfakta om reaktoren:
Tsjernobylreaktoren var en såkalt RBMK-reaktor (RBMK er et russisk akronym som betyr noe sånt som "grafittmoderert trykkvannsreaktor"): den var veldig økonomisk mtp uranressurser, og den egnet seg til å produsere våpenplutonium.
Det var et velkjent faktum at reaktoren oppførte seg svært ustabilt ved lav effekt, og at SCRAM (når man skrur av reaktoren/kjedereaksjonen raskt ifbm feks en ulykke) tok 10 ganger lenger tid enn vanlig - 20 sekunder ifht 2 sekunder på feks en PWR-reaktor (en vanlig trykkvannsreaktor). Dessuten vil kontrollstavene i de første sekundene de føres inn i reaktoren faktisk aksellerere kjedereaksjonen, heller enn å stoppe den...

Vi befinner oss altså i det som i dag er Ukraina, da Sovjetunionen. Det flotte Tsjernobylanlegget har fått en ny sikkerhetsinstallasjon, som må testes ut, og dette skal skje tidlig om morgenen, lørdag den 26. april 1986. Forberedelsene til testen begynte rett etter midnatt den 25. april 1986.
Fredag 25. april 1986, klokken 01:00: 
Arbeiderene begynner sakte og forsiktig å redusere effekten på kraftverket, den skal gå fra 3200 MegaWatt (MW)  til 700 MW.
Klokken 14:00: KievEnergo ber om at effekten ikke reduseres mer enn den allerhede er, siden elektrisitetsbehovet i Kiev er stort rett før helgen.
Klokken 23:00: Effektreduksjonen tas opp igjen. 9 timer som skulle ha vært brukt til å redusere effekten sakte og forsiktig var dermed tapt, og siden testen skulle gjennomføres om morgenen lørdag 26. april måtte den videre jobbingen foregå i høyere tempo.
Lørdag 26. april, klokken 00:30:
Et plutselig, voldsomt effektfall på reaktoren, ned til 30 MW  (mao: 670 MW lavere enn de skulle totalt). En så lav effekt gir et så lavt trykk at rør som skal være fylt med damp, heller blir rør fylt med vann. Dette fører også til at effekten gjerne faller enda mer, og operatørene jobber dermed på spreng for å få hevet effekten nok til at den planlagte sikkerhetstesten skal kunne gjennomføres dagen etter.
Klokken 01:15: Reaktoringeniøren mener at testen bør avbrytes, men fortsetter å gjøre alt han kan for å få hevet effekten til riktig nivå, i frykt for å miste jobben... For å klare dette bryter han flere sikkerhetsregler. Viktigst av alt er at alle kontrollstaver dras helt ut av reaktorkjernen (ikke tillatt i følge sikkerhetsreglene), og dette gjorde at effekten hoppet opp til 200 MW  (nesten alle kanaler er fylt med vann, og alle kontrollstaver er dratt ut av kjernen...). RBMK-reaktoren er maksimalt ustabil under disse forholdene (dette var kjent, og en britisk sikkerhetsrapport fra mars 1986 konkluderte med at RBMK aldri  ville kunne leve opp til vestens sikkerhetskrav, selv om det var en teknologisk veldig interessant konstruksjon).
Klokken 01:23:40: En operatør trykker på SCRAM-knappen og alle kontrollstavene settes inn i reaktorkjernen. Dette var dråpen som fikk begeret til renne over; effekten i reaktoren økte voldsomt fordi den nederste delen av kontroll/SCRAM-stavene var av grafitt (noe som økerreaktiviteten!).
I kortversjon førte dette til to voldsomme dampeksplosjoner(rørene som opprinnelig var fylt med vann ble på altfor kort tid igjen fylt med damp, og damp tar som kjent mer plass enn vann), som blåste taket av reaktortanken, slik at reaktorkjernen ble liggende helt åpen, og deler av det superaktive brenselet ble slynget ut på bakken.
Grafitten i reaktoren tok så fyr; en kraftig brann som varte i flere dager, og på en effektiv måte spredte innholdet (bla. de svært radioaktive fisjonsproduktene) ut av reaktoren og opp i atmosfæren.

Den desidert verste ulykken i kjernekraftens historie var et faktum.

Tsjernobylkraftverket i bakgrunnen, den fraflyttede "paradebyen" Pripyat i forgrunnen

7

HJÆLP!

Om tre uker drar vi til Tokyo og Japan. Jeg kan bare ikke tro det. Det er virkelig. Det har liksom bare vært en drøm, som jeg nesten ikke trodde det kom til å skje noe med, så lenge nå - men nå er billettene bestilt og barnevakt er ordnet med og alt mulig (ikke what to wear, ennå, da , men sååå lang tid i forveien planlegger jeg ikke det - jeg er ikke gal heller 😉 ). Om tre uker blir det altså SUSHI OG KJERNEKRAFT <3<3<3

Har jobbet litt med noen skriveprosjekter jeg har gående nå i det siste, og da satt jeg og bladde meg litt bakover i bloggen, og fant et innlegg fra lang tid tilbake, der jeg nettopp satt og drømte om det å dra til Japan. Og siden folk enten sikkert har glemt innlegget, eller kanskje er nye blogglesere, så syns jeg det er på tide og ta opp igjen den doseberegningen jeg gjorde da 😉

Saken er jo den at jeg har jo planer om å fly til Japan, og når man flyr så kommer man jo ganske langt opp i luften - man kommer altså nærmere verdensrommet, og når man kommer nærmere verdensrommet så får man en høyere stråledose (enn hvis jeg feks bare er på bakken 😉 )... Faktisk så er det sånn at hvis jeg flyr Oslo-Tokyo får jeg sånn ca 0.08 mSv, og det er jo bare én vei; så totalt blir det en stråledose på 0.16 mSv på å fly fram og tilbake (og jeg må jo liksom tilbake - har jo ikke tenkt å flytte til Tokyo heller). Det er jo fire ganger mer enn gjennomsnittsdosen jeg får per år fra Tsjernobyl det xD (Gjennomsnittsdosen fra Tsjernobylnedfallet i Norge er altså beregnet å være 0.04 mSv per år, over 50 år.)
Forhåpentligvis så har ikke flypersonell så voldsom radiofobi som enkelte 🙂 

Jeg er mest redd for turbulens, jeg, da 😛

God mandag søte rosa!
På torsdag holdt jeg foredrag på UiOs Åpne Dag; "10 myter om stråling", der jeg, vel, altså, snakket om 10 forskjellige "myter" eller misoppfattelser rundt dette med (ioniserende) stråling. (Altså type radioaktivitet - alfa-, beta- og gammastråling). Har tenkt å dele hele foredraget med dere - i morgen, regner jeg med - men det er en myte jeg har lyst til å ta litt for seg selv. Det som i foredraget var myte nummer 2:
Stråling er farlig - uansett - og nedfallet fra Tsjernobyl vil gi 500 kreftdødsfall i Norge

Dette er altså en myte, da... Jeg skal fortelle logikken bak at noen sier at nedfallet fra Tsjernobylulykken i Norge vil gi 500 (eller noe) ekstra kreftdødsfall:
Ok, så la oss se på Paracet. La oss si at hvis du spiser 100 Paracet så dør du helt sikkert (jeg vet ikke hva som er dødelig dose av Paracet, altså, så dette er bare et fint tall <3), så hvis jeg tar 100 Paracet dør jeg altså. Hvis jeg deler de 100 i to, og tar 50 selv, og gir 50 til en annen så har vi jo til sammen tatt 100 Paracet - så en av oss vil dø. Hvis jeg deler de 100 i 50, tar 2 selv og gir 2 hver til 49 andre personer så har vi til sammen spist 100 Paracet - så en av oss vil dø... Eller hvis vi er 10 000 mennesker som tar én Paracet hver så har vi totalt spist 100 dødsdoser - og 100 av de 10 000 vil dø.
Vel, der har jeg sånn ca forklart begrepet "kollektivdose" - altså den samlede, kollektive, dosen til befolkningen, og det er sånn man "kommer frem til" at nedfallet i Norge fra Tsjernobylulykken vil gi ekstra kreftdødsfall. Man tar altså å legger sammen alle de bittesmå ekstra stråledosene som nordmenn får fra dette nedfallet og beregner ut i fra dette hvor mange dette kan drepe.
Men, for at dette skulle være riktig så er effekten av stråling nødt til å være lineær; altså at all ekstra dose - uansett hvor liten den er - gir en ekstra sannsynlighet for kreft (også øker denne sannsynligheten helt proporsjonalt med stråledosen). Dette kan vi (antageligvis) aldri finne ut av helt sikkert, men det er veldig mye forskning som tyder på at det ikke er noen lineær sammenhengmellom små stråledoser og sannsynlighet for kreft...!

Det er ikke påvist kreftskader etter stråledoser under rundt 100 mSv. Et annet meget aktuelt tema er hormese, dvs en faktisk redusert skadeforekomst for små doser (kurve nummer 3 på bildet til venstre 😉 ). Vi kjenner til en rekke kjemiske sporstoffer som har en hormetisk effekt, der kroppen trenger litt, men der mye er giftig.

ICRP (det internasjonale strålevernet) har valgt å se bort fra andre forløp enn det lineære (kurve nummer 1-LNT - "Linear No Threshold"), selv om det i dag finnes flere store undersøkelser av lavdose-eksponering. Det lineære forløp regnes i dag for å være i uoverenstemmelse med observasjoner. Men siden ICRPs anbefalinger gjelder regulering av bruk av stråling, er denne konservative hypotesen akseptabel.

(...) 

ICRPs anbefalinger er primært ment å gjelde for planlagt bruk av stråling, og er derved basert på flere konservative forutsetninger. Bruk av disse grensene (20 mSv
per år til yrkesutsatte og 1 mSv per år til den generelle befolkning) til å beregne faktisk antall skader i en befolkning er derfor faglig uakseptabelt.
 Ikke desto mindre blir det gjort i stor utstrekning. Anbefalingene sier ingenting om bakgrunnsstrålingen vi til enhver tid utsettes for, og som er vesentlig større. Det hevdes derfor i dag at grensene for planlagt bruk av stråling heller burde defineres ifht bakgrunnsstrålingen.

Vel vel, det var den myten. I morgen kommer altså alle foilene med de 10 mytene, men nå skal jeg hvert øyeblikk løpe avgårde for å plukke opp Andrea og Alexandra, siden Andrea skal sove hos oss i natt. I går var forresten Alexandra og jeg i Lillestrøm, og på toget hjem igjen møtte vi tilfeldigvis Andrea (og Carina - Andrea reiser ikke alene med toget riktig ennå) og jeg tror jeg trygt kan si at det er kusine-kjærlighet mellom de to jentene <3


1

Min bokanbefaling nummer to kan selvsagt ikke handle om noe annet enn Tsjernobyl - er det mulig? Jeg tror nesten jeg har et litt sykelig forhold til den ulykken - men det er altså bare så mange aspekter ved den som gjør det hele så utrolig interessant!
Min bokanbefaling denne uken heter Voices from Chernobyl, og er skrevet av den ukrainskfødte journalisten Svetalana Alexievich, som har intervjuet masse forskjellige mennesker fra Ukraina/Hviterussland/Russland, som på en eller annen måte var involvert i ulykken; fra konen til en død brannmann, til ekteparet som har valgt å bli boende innenfor exclusion zone, osv.

Voices from Chernobyl er en av svært mange bøker som er skrevet om Tsjernobyl-ulykken, og det er sikkert ikke den eneste jeg vil anbefale... men det er den siste jeg har lest, og den er litt annerledes;  og den er veldig god og veldig interessant 🙂
Boken handler dog ikke om selve ulykken, men om menneskene, og alle skjebnene. Senere kan jeg sikkert forsøke å komme med en bok som handler om selve ulykken.

ADVARSEL!

Ja, jeg vil også komme med en liten "advarsel" til de som skal lese boken (jeg var faktisk litt i tvil om jeg skulle nevne boken her, eller ikke, nettopp pga dette): Det er veldig veldig interessant å lese menneskers personlige opplevelse av det som skjedde for snart 30 år siden - men husk at det er nettopp det det er; deres PERSONLIGE OPPLEVELSE. Med det mener jeg at veldig mange av de som er intervjuet her vet veldig lite om stråling, og hva de har bitt utsatt for og sånn; så registrerer de at et eller annet kjipt skjer, en eller annen gang etter ulykken - og så tar de og sier at det var pga ulykken. Et av de mer søkte eksempelet er den gamle konen, som har valgt (?)  å bli innenfor exclusion zone, som krangler med naboen sin og sier noe sånn á la "det er din skyld at kua mi døde for kua di ga kua mi stråling" (...) Altså, trist for henne at kuen dør, men dette har ingen rot i virkeligheten 😛
Så skal det også sies at nettopp det å få et "bevis" på at veldig mange av de menneskene som på et eller annet vis ble påvirket av Tsjernobylulykken ikke egentlig vet/skjønner hva som kan tilskrives biofysiske effekter av stråling, og hva som kommer av helt andre ting (stress som følge av ulykken, eller rett og slett helt vanlig type man blir faktisk syk...feks); fordi ofte så sier folk til meg at "jamen, den og den som bodde der sa sånn og sånn" - men "den og den" er altså ikke noen ekspert på stråling allikevel 😉 Boken gjør det tydelig for meg, det jeg lenge har gått og trodd, at også i disse områdene er det minst like myter og misforståelser rundt stråling og hva stråling kan og ikke kan gjøre, som det jeg opplever stort sett overalt ellers. 
Husk på dette hvis du skal lese boken, og ENJOY 😉

Det er nok av triste skjebner i boken, da...

Men hva er nå egentlig en "høy dose"? 5 ganger mer enn normalt kan jo høres sinnsykt mye ut, men det trenger jo faktisk ikke å være farlig, selv om noe er 5 ganger mer enn vanlig ...;)

Har brettet inn for å markere alle sidene der det er noe jeg må gå tilbake til og sjekke nøyere - for det aller meste er det ting som jeg vet er feil/åpenbart misforståelser fra de som er intervjuet i boken

Den kan også taes med på tur, feks - her er den med meg til Paris

Voices from Chernobyl tror jeg ikke finnes på Realfagsbiblioteket i skrivende stund - men jeg skal sørge for den fins der om ikke lenge! Selv bestilte jeg min på Amazon, og måtte vente i maaange måneder før jeg fikk den :/
----------------------------------

Har du en (bok)anbefaling til meg? 😉

1

God kveld i fra Rose-slottet 😉
I dag skulle jeg være superflink til å legge meg tidlig, siden det ble altfor sent i går - men så var det bare det at jeg skulle være superflink og trene óg...så det skar seg litt :/ (Mange syns kanskje ikke det er spesielt sent nå, men jeg skal opp klokken 5 i morgen tidlig, for å rekke tidlig fly til Trondheim, der jeg skal holde foredrag).
Morgendagens foredrag er heldigvis klart, og jeg har lesestoff for flyturen (les: sitatsjekk på to intervjuer, og dersom jeg skulle trenge mer har jeg ca en million artikler å komme meg igjennom før neste møte med Ludvigsenutvalget, som er i midten av februar - i Paris!). Gled dere, Trondheim; jeg skal stå og ralle om ting jeg syns er irriterende i 40 minutter; og her er en liten sniktitt på morgendagens foredragsslides:

Ellers er det klart for del 3 av 4 i serien "Stråling og kreft og forskning og sånn" (del 1 HER, og del 2 HER), og denne gangen er det kjernekraft som er temaet:

"Motstanden mot kjernekraft skyldes i første rekke ulykker som Tsjernobyl, med utslipp av radioaktive stoffer. Det ble angitt skremmende tall om et betydelig antall krefttilfeller som følge av ulykken. Det er uteblitt. Men redselen for stråling førte til et stort antall provoserte aborter.

Nå, 28 år etter ulykken, kan vi slå fast at de arbeidere som ryddet opp etter ulykken, og som fikk de største stråledosene, har mindre kreft og er friskere enn normalbefolkningen. (...)"

(Ikke de som fikk de VIRKELIG store dosene, selvsagt; igjen så er det enighet om at STORE doser er skadelig, og til og med dødelig)

"Vi kan heller ikke vente noen økning av kreft som følge av Fukushima. Den strålefrykt som da kom til syne er et sørgelig resultat av misforstått strålebiologi. De 19 000 dødsfall som tsunamien og jordskjelvet ga, druknet i en strålefrykt som ikke har gitt noen dødsfall.

De nevnte reaktorulykker har i sterk grad gitt kjernekraft et dårlig omdømme (...). Etter Fukushima ble samtlige Japanske kjernekraftverk stengt (ca 30% av den elektriske energi forsvant), og de måtte erstatte dette med import av fossilt brensel med dertil hørende CO2-utslipp. Tyskland besluttet å fase ut kjernekraften. De vil erstatte den med fornybar energi, i første rekke vindkraft. (...) Så langt erstattes den med fornyet kullkraft og import av fransk kjernekraft.

Kjernekraft kan gi et viktig bidrag til fremtidens energiforsyning. Den slipper ikke ut CO2, og med en ny forståelse av strålebiologi vil lagring av radioaktivt avfall ikke være det store problemet."

- Thormod Henriksen (professor emeritus i biofysikk)

Da er  det bare et par praktiske småting jeg er nødt til å ordne, så er det rett i seng - så håper jeg å våkne ganske så frisk og uthvilt, og klar for en travel dag i Trondheim i morgen...God natt <3 <3 <3