Hopp til innhold

Påsken er over (og vel så det), men det er ikke føljetongen om thorium riktig ennå - her kommer del fem.

Jeg tror forresten jeg har gjort noen valg med tanke på farge og "rød tråd" for bryllupet som jo kommer til å komme (nei, vi har ikke bestemt dato, men det blir i 2019, helt sikkert), og jeg kommer nok til å dele litt bryllup her inne fremover - i tillegg til oppdateringen om plutoniumeksperiment, og andre kjernefysikk og forskning-ting, selvsagt. Regner med det ikke kommer som noe stort sjokk at det å planlegge bryllup natrulig nok blir en del av tankene mine i større eller mindre grad i mpnedene fremover - litt bridezilla må man ha lov til å bli 😉 Dere kan jo gjerne gjette på hvilke farger dere tror kommer til å gå igjen i bryllupet til Anders og meg...

Greia med thorium, DEL V

I motsetning til uran så har thorium ingen fissil/spaltbar isotop i seg, sånn som man finner det i naturen (uran har isotopen uran-235, som altså er spaltbar). For å starte prosessen der thorium-232 (som man finner thorium ute i naturen) forvandles til uran-233 trenger man en nøytronkilde (i uranbrensel så er denne kilden fissilt uran-235, som altså allerede er tilstede). Det fins flere mulige valg nøytronkilde: En ekstern kilde - en aksellerator som produserer nøytroner ved spallasjon av feks bly (som ble foreslått av carlo Rubbia), bygge opp en viss mengde uran-233 som videre kan brukes som nøytronkilde (en catch-22 her er at du trenger å ha throium-brenselssyklusen gående for å kunne starte thorium-brenselssyklusen for å produsere uran-233), plutonium fra resirkulert uranbrensel, eller, som denne avhandlingen tar for seg (Artikkel 1), rent eller så å si rent uran-235.

Thorium-brenselssyklusen trenger ett nøytron for å omdanne thorium-232 til uran-233, og ett nøytron for å fisjonere (spalte) uran-233, for hver eneste nøytron-generasjon. Siden Eta og Alpha (som det sto om i del 4 av denne føljetongen, som det er linket til neders i dette innlegget) er det de er, er det i prinsippet mulig å breede i et termisk nøytronspektrum (altås med nøytroner med lav energi). I det som ble kalt the Shippingport Light Water Breeder Reactor program ble det demonstrert at breeding absolutt var mulig i en lettvannsreaktor (som betyr termisk nøytronspektrum). Denne reaktoren hadde dog en meget spesiell geometri, og den ble aldri kommersialisert.

Andre strategier som kan brukes for å oppnå breeding er:

  • å fjerne nøytrongifter som spiser nøytroner (hovedsakelig fisjonsprodukter): saltsmeltereaktor-teknologi (MSR)
  • å bruke en ekstern nøytronkilde (ADS)

Ingen av disse alternativene er "off the shelf", og de er ikke egentlig realistiske valg per i dag.

Uavhengig av dette; selv om breeding er vanskelig å få til, så er det mulig å forbedre breeding-ratioen sammenliknet med standard uran-brensel i en standard trykkvannsreaktor allerede "i dag". Ved å bruke denne siste strategien vil man også få thorium inn i den kjernefysiske brensels-miksen, og på den måten drøye uranressursene i verden.


Resten av denne føljetongen kan leses nedenfor 🙂

Påskekrim á la SunnivaRose

Påskekrim DEL II

Påskekrim, del III

Dr. Rose-jubileum, og thorium-brenselssyklusen (påskekrim del 4)

I dag er det nøyaktig ett år siden jeg forvarte doktogradsavhandlingen min, og på denne tiden den 29. mars 2017 hadde jeg fått beskjed om at komiteen godkjente disputasen min (og jeg var så absurd lettet at jeg tror ikke jeg kan forklare det en gang). Det passer derfor ekstra godt at vi har kommet frem til "hvorfor thorium?" i føljetongen her, og hvis du har lyst til å se hva jeg snakket om på prøveforelesningen for et år siden (temaet her har ikke å gjøre med eget forskningsrabeid, så ikke bli forvirret over at det ikke er noe thorium i denne filmen 😉 ) kan du se filmen her - eller scrolle litt lenger ned, til dagens episode:

Greia med thorium, DEL IV

Thorium-brenselssyklusen - hvorfor thorium?

Thorium, grunnstoff nummer 90, er et svakt radioaktivt materiale vi finner i naturen, som ble oppdaget i Norge i 1828 av den svenske kjemikeren Jöns Jacob Berzelius. Berzelius oppkalte det nye grunnstoffet etter tordenguden Thor. Det er estimert at Norge har mer enn 100 kilotonn thorium - som utgjør en betydeliog andel av den totale mengden av de globale reservene, på ca 3 megatonn. Thorium fins i små mengder overalt i jordskorpen, med gjennomsnittlig konsentrasjon på 10 ppm. Det betyr at thorium er 4 ganger mer vanlig enn uran.

I naturen er thorium et monoisotopisk grunnstoff - det betår kun av den ikke-fissile isotopen thorium-232, som enkelt kan gjøres om til den fissile uran-isotopen uran-233. Thorium er altså et fertilt materiale. Thorium-brenselssyklusen starter med at thorium absorberer et nøytron, som dermed henfaller til protaktinium-233, og deretter viodere til uran-233:

n+Th-232 --> Th-233(beta-minus, 22 minutter) Pa-233(beta-minus, 27 dager) U-233

Uran-233 er den kjernen som faktisk spaltes etter å ha bli truffet av et nøytron, og den er dermed hovedansvarlig for den energien som frigjøres i throium-baserte brensel. Den tilsvarende prosessen i uran-brenselssyklusen er den fertile uran-238, som fanger inn et nøytron, og blir omdannet til fissilt olutonium-239:

n+U-238 --> U-239(beta-minus, 24 minutter) Np-239(beta-minus, 2.4 dager) Pu-239

I figur 4 kan man se at grunnen til at det går an å si at thorium er et "bedre brenselsmateriale" enn uran er på grunn av de kjenrefysiske egenskapene til uran-233 - som er helt fantastiske! Antall nøytroner som blir frigjort per nøytron som absorberes (Eta) er høyere i det termiske området enn for plutonium-239, og antall kjerner som absorberes sammenliknet med de som fisjonerer (når de treffes av et nøytron - Alpha), er lavere i det termiske området enn for plutonium-239.

Dette betyr at det produseres mer nytt fissilt materiale når thorium er den fertile isotopen enn når det er uran-238 (i det termiske nøytron-området). I tillegg blir det produsert mindre langlivet avfall med thorium-232 som den fertile isotopen enn uran-238, siden uran-233 oftere fisjonerer når den treffes av et nøytron enn plutonium-239. Det er også nødvendig med mange flere nøytroninnfangninger etter hverandre for å lage et transuran - 5 versus 1.


Denne føljetongen er ikke helt over ennå, men det blir ingen ny episode i løpet av de neste dagene; i morgen tidlig-tidlig setter Anders og jeg oss nemlig på et fly til Roma, og der skal vi slappe av og kose oss de neste dagene ♥

God påske til alle fine lesere! 

Greia med thorium, DEL III

Hei onsdag og siste arbiedsdag før det er påskeferie for alle (ok, ikke absolutt alle, da, jeg vet det er noen som må være på jobb når det er helligdager også - og takk til dere som gjør sånne jobber for det!). I morgen er det ett år siden disputas, og dette bildet dukket opp i FB-feeden min i dag...den følelsen jeg hadde for akkurat ett år siden, den var virkelig ikke god, altså 😛

Men nå vet jeg jo at det gikk ganske bra ("She fought well", står det blant annet i rapporten om disputasen, så det er jo ikke så aller verst), og som kjent så markerer jeg dette jubileet denne påsken med føljetong av deler av avhandlingen. DEL I ligger her, og DEL II ligger her, og i dag er det altså klart for DEL III:

Brenselssyklusen

Generelt så starter brenselssyklusen til et kjernekraftverk (ofte bare "fuel cycle" eller brenselssyklus) med utvinning av brenselsmaterialene (uran, thorium), og slutter med endelig deponering av avfall. Målet er å få så mye energi som mulig ut av materialet, innenfor grensene man har satt for at kjernekraftverkene skal drives sikkert.

Det er to hovedstrategier for brenselssyklusen:

  1. Once thorugh cycle ("en gang igjennom"-syklus), der man anser brukt brensel som avfall, etter at det har vært inne i reaktoren. Denne varianten er den mest økonomiske så lenge uran som råvare er billig og lett tilgjengelig. På den annen side så får man produsert mest avfall på denne måten, enn med den andre strategien.
  2. Reprossesering og closing the fuel cycle (lukke brenselssyklusen). Med denne strategien blir brukt brensel sett på som en ressurs, som man resirkulerer. Denne brenselssyklusen produserer minre avfall enn den første strategien, men den er dyrere på kort sikt, så lenge uran er en rimelig ressurs. Dessuten kan denne syklusen få folk til å bli bekymret for våpenproduskjon. Reprossesering kan gjøre én gang (det er standardvalget for uran/plutonium-brenselssyklusen, i de landene som faktisk reprossereser), eller flere ganger (som det som presenteres i den første artikkelen). Det ultimate målet er å produsere mer nytt spaltabrt material i løpet av syklusen, enn den som brukes.

Fra et kjernefysisk perspektiv (og fokuset i denne avhandlingen) er den mest "interessante" delen av brenselssyklusen er fysikken i de komplekse, kjernefysiske prosessene som skjer i reaktorkjenrnen - som inkluder et stor antall kjernefysiske reaksjoner og henfall.

Nøytronbudsjettet

Nøytronene driver kjedereakjsonen, og er dessuten ansvarlige for å transformere fertilt materiale til fissilt materiale - noe som er helt grunnelggende viktig for  thorium-brenselssyklusen, der det faktisk ikke fins noen fissil isotop. Nytronbudsjettet er dermed svært viktig for hvordan reaktoren oppfører seg. I fisjonsprosessen blir det i gjennosmnitt frigjort mer enn ett nøytron. Det betyr at dersom tapet av nøytroner til moderator, materiale i strukturene rundt, og brenselet selv (etc) ikke er for stort, burde det være nok nøytroner tilgjengelig til å transformere fertilt materiale (thorium-232 - thorium-brenselssyklus, uran-238 - uran-brenselssyklus) til fissilt material (uran-233 -thorium-brenselssyklus, plutonium-239 - uran-brenselssyklus), i tillegg til det ene nøytronet som trengs for å holde kjedereaksjonen gående. Et mål på hvor bra dette skjer i brenselet er breeding ratio, som er raten fissilt materiale produseres delt på raten det brukes. Hvis en reaktor lager mer fissilt materiale, fra det fertiel, enn det den bruker, sier man at reakoren "avler" (breeding).

Hvis 2 nøytroner blir frigitt per fisjon (som i gjennomsnitt er sant), er breeding i prinsippet mulig. Dessverre, som allerede nevnt, så taper man nøytroner som blir "spist opp" andre steder i reaktoren.

Greia med thorium, DEL II

Hei dere, her kommer del 2 av "påskekrimmen" jeg startet i går 🙂 DEL I kan lese her.

Kjernekraft - i går, i dag, og i morgen

Kjernekraft

I går

Den 2. desember 1942 gikk verdens aller første menneskelagde kjernereaktor - Chicago Pile no 1 - kritisk, under Enrico Fermis ledelse. 12 år etter dette, den 27. juni 1954, ble det produsert elektrisistet på Obnisk-kjernekraftverket i Russland - verdens første sivile kjernekraftverk. To tiår senere, i løpet av 1970-årene, ble det produsert 100 GW elektrisitet fra kjernekraft, og selv om det var de som var negativt innstilt til alt som hadde med atom å gjøre, så var majoriteten forholdsvis positiv. Dette holdt seg stort sett inntil Tsjernobyl-ulykken, som skjedde den 26. april 1986. En konsekvens av denne ulykken var at den virkelig fikk bremset ned den teknologiske utviklingen innen kjernekraft. Tsjernobyl satte ikke en stopp på kjernekraft som en del av verdens energimiks, men fikk altså virkelig saknet utviklingen av neste generasjons kjernekraftverk. I stedet for å erstatte gamle kjernekraftverk med ny og bedre teknologi, har heller dekommisjoneringsdatoene blitt kraftig forlenget, og forskning og utvikling utsatt.

Status i dag

Gjennomsnittlig befolkningsvekst er på ca 80 millioner per år. Verdens totale befolkning har gått fra 3.7 milliarder i 1970, til nesten 7.5 milliarder i 2016 (note: teksten ble skrevet i desember 2016 😉 ), og FN antar at vi kommer til på nå 10 milliarder mennesker i verden rundt 2050. Etter dette antar man også vekst, selv om den kommer til å skje saktere.

Med både flere mennesker, og økt energiforbruk per capita, antar man at det total energibehovet vil øke med rundt 50% fra 2012 til 2014. den største økningen skjer i Kina og India, som til sammen står for ca 50% av veksten.

 

Energisikkerhet defineres av IEA (International Energy Agency) som "uavbrutt tilgang til energikilder til en rimelig pris", og anses som helt grunnleggende for en sikker, stabil og fredelig verden. Det å skulle oppnå energisikkerhet for alle har dog vist seg vanskelig. CO2-utslippene våre har ført til en menneskeskapt klimaendring. I dag er den aller største kilden til energi fossil (olje, kull og gass) - hvilket bidrar til klimaendringer med sine store CO2-utslipp.

Ettersom frykten for klimaendringer har økt, og frykten for et nytt Tsjernobyl har minket, har kjernekraft igjen blitt en mulig løsning på den økte energietterspørselen. I FNs klimapanels siste rapport (no. 5, som ble publisert i 2014 - altså 3 år etter Fukushima-ulykken) blir kjernekraft trukket frem som en viktig del av en mulig løsning på menneskeskapte klimaendringer. De grupperer kjernekraft sammen med andre fornybare energikilder, som nøkkelelementer i et lavkarbons energisystem, sammen med CO2-fangst og -lagring (CCS). Spørsmålet "What are the main mitigation options in the energy supply sector?" besvares på følgende måte:

No single mitigation option in the energy supply sector will be sufficient (...) Achieving deep [cuts in greenhouse gas (GHG) emissions] will require more intensive use of low-GHG technologies such as renewable energy, nuclear energy, and carbon dioxide capture and storage (CCS). (Min understreking)

Klimapanelet foreslår at bruken av kjernekraft bør økes, og at denne energiformen kan erstatte den fossile baselasten (elektrisitet produsert med olje, gass, kull) mange steder i verden.

Per 2014 er det 440 kjernekraftverk i verden. Disse produserer ca 11% av all elektrisitet på verdensbasis.

I morgen

Hvis vi antar at anbefalingene til IPCC følges så vil det bli en utbygging av kjernekraft. Mer enn 60 reaktorer er under bygging (per januar 2017), og elektrisitetsprosuksjon fra kjernekraft er forvntet å øke proporsjonalt med den total elektrisitetsproduksjonen over de neste 20 årene. Denne utbyggingen vil mest sannsynlig hovedsakelig bestå av velkjent kjerneteknologi - det vil si GenerasjonIII(+) termiske reaktorer, som kjører på uran/plutonium-brenselssyklusen. Uten resirkulering av avfallet/(det brukte) brenselet vil uran, som en lett tilgjengelig og rimelig ressurs, etterhvert forsvinne. I tillegg vil man få bygget opp store mengder radioaktivt avfall. Thorium-brenselssyklusen kan være en del av løsningen på begge disse problemene:

Det fins mer thorium enn uran på Jorden, og selv om både uran- og thoriumbaserte brensel kan "avles" (breeding) - dermed gi opp til 200 ganger mer energi fra brenselet - ser public opinion ut til å være mer positiv når det gjelder thorium, fordi det er noe "nytt". Offentlig aksept, heller enn økonomi, er hovedbarrieren mot utvikling i Vesten. I Kina og India er folket stoltere av sine kjernefysiske prestasjoner, og det er en sterk støtte til kjernekraft. Videre utvikling av kjernekraft vil derfor i hovedsak skje i denne delen av verden. "Avl" eller nesten-"avl" (breeding) er dessuten mulig med termiske nøytroner i thoriumbasert brensel. I tillegg blir det produsert neglisjerbare mengde av plutonium fra thoriumbaserte brensel, sammenliknet med uranbaserte brensel, og det er mye vanskeligere å produsere våpen fra denne brenselssyklusen. Dersom thoriumbaserte brensel multi-resirkuleres kan hele avfallsproblematikken redusere meget kraftig.

 

Hei dere, nyter dere ferien (hvis dere har ferie)? Hvis dere jobber (som meg) så nyter dere kanskje at det er så utrolig mye mer stille og rolig enn det pleier - i alle fall er det sånn i Oslo! Jeg har ikke noe sånn forhold til påske og fjellet, så det at det er stille i byen, at snøen smelter (den gjorde i alle fall det i går 😉 ), og at Hestehoven begynner å titte frem (jeg har sett små løkskudd, så jeg krysser fingrene for at Hestehoven er her før påsken er over), det er dét som er påske for meg ♥

Men over til tittelen: Jeg har vel kanskje ikke krim, akkurat, men en liten føljetong tenkte jeg å ta her nå i påsken (ferie eller ei). Om 3 dager har jeg nemlig disputasjubileum, som betyr at jeg har kunnet kalle meg Dr. Rose i ett år, og det vil jeg markere med å dele litt fra doktorgradsavhandlingen min. De mest innfløkte detaljene fra oppgaven tror jeg ikke det er så mange som er her inne og leser som har interesse av, men introduksjonsdelen av den, der jeg snakker om kjernekraft og thorium - den er kanskje av interesse for flere...spesielt med tanke på at noen "likte meg bedre da jeg snakket om thorium" 😉 Jeg håper dere vil like det!

Greia med thorium, DEL1

Hvis du fulgte med i norske medier i årene mellom 2005 og 2008, var det nærmest umulig ikke å få med seg at det var mye snakk om thorium, thorium-brensel, og "thorium-reaktorer". Thorium ble fremstilt som "den nye kjernekraften"; noe som var helt annerledes, og mye bedre enn den "gamle", uranbaserte kjernekraften. Det ble dessuten også påstått at thorium kunne bli "Norges neste olje", siden et av verdens største thorium-reserver ligger i Norge.

Men gratis lunsj fins ikke. Thorium er ikke sendt fra oven - noe "gude-gitt", ei heller er det fienden. Hele kjernekraftdebatten er ofte, dessverre, veldig polarisert. Thorium er et grunnstoff som, under de riktige omstendighetene, kan bli gjort om til den helt utmerkede fissile (spaltbare) kjernen uran-233, og på grunn av egenskapene til denne uran-isotopen, kan det hele bli bedre enn tradisjonelt uran-basert brensel. Dog er det ikke himmel og jord i forskjell på thorium-brenselssyklusen og uran- og uran/plutonium-brenselssyklusen. Thorium-brenselsyklusen er et spesialtilfelle av den mer generelle brenselsyklusen for kjernekraft, som altså kan ha noen veldig positive sider ved seg:

  • under de rette forutsetningene kan reaktorer som bruker thorium-baserte brensel produsere mye mindre langlivet, radioaktivt avfall
  • det fins mer thorium på jorden enn uran (ca 4 ganger så mye)
  • det blir så å si ikke produsert plutonium fra thorium-baserte brensel - noe som kan være positivt med tanke på public opinion
  • det er en mulighet for å få til breeding, eller nesten-breeding (breeding betyr at man produserer mer fissilt materiale enn det man bruker - det høres nesten ut som evighetsmaskin, bare at det ikke er det, og at det er sant 🙂 ), i et termisk nøytronspektrum
  • det er vanskeligere å produsere våpen fra thorium enn fra uran eller plutonium, fordi den fissile uran-233 alltid vil være forurenset av uran-232, som gir fra seg gamma-stråling med veldig høy energi (som gjør det nærmest umulig å lage våpen av)

To av de største utfordringene i vår tid er energi-sikkerhet og klimaendringer. Vi trenger tilgang til nok, rimelig og pålitelig energi, og vi trenger å produsere denne uten CO2-utslipp (eller så nært det lar seg gjøre). Thorium som brensel i kjernekraftverk kan være en (viktig) brikke i løsningen på disse utfordringene.


...og sånn lyder altså introduksjonen (de 2 første sidene) av doktorgradsavhandlingen min 🙂

I morgen kommer DEL 2, med en liten historisk gjennomgang av kjernekraft i går og i dag.

 

 

Hei dere ♥ Jeg driver og reiser rundt og holder foredrag på videregående om dagen, og jeg har lyst til å dele noe av det jeg snakker om med dere.

Det er jo noen ting folk alltid lurer på, som jeg prøver å svare på i foredragene mine, og jeg tenkte altså jeg skulle svare litt her på bloggen også (still gjerne flere spørsmål!). Jeg har lyst til å starte med to spørsmål nå i kveld, så får vi se hvilke andre ting dere lurer på... Jeg tror ikke jeg kommer til å klare å gjennomføre en fast ukesspalte med spørsmål og svar, men siden det ikke er alt for lenge til søknadsfrist på studier og sånn, har jeg lyst til å prøve å svare litt på sånne spørsmål en stund fremover nå - og jeg prøøøøver på å gjøre det én gang i uken. Høres det ok ut? 🙂

 


Må man være smart (evt er du smart – hvordan kan jeg i det hele tatt gi et skikkelig svar på det? Seriøst, liksom ?!?)

Tja, hva vil det egentlig si å være smart? For meg virker det som om folk (elever, studenter, og andre) ofte blander sammen "smart" (er det en slags form for talent, eller?) med å være arbeidssom.

Men det er egentlig veldig gode nyheter!

For hvis det var sånn at enten så kan du det, eller så kan du det ikke, så er det jo ingen ting du kan gjøre med det selv. Men når noe handler om hva DU gjør, så betyr det at DU kan bestemme selv hvordan det skal gå. Så, nei, du må ikke være ”smart”, men du må gjøre noen smarte ting – jobbe hardt, gjøre en innsats. Er det ikke sånn med alt man skal bli litt flink til, egentlig? Altså, det er jo ikke spesielt stas å være flink til noe absolutt alle er flinke til...? Jeg er skikkelig flink til å gå, liksom - vel, det er omtrent alle andre også. Ikke akkurat noe å skryte veldig av, dét.

Og dette med arbeid og trening er jo litt rart, for når det kommer til realfag, og spesielt matematikk, så virker det som om ganske mange tenker at den kunnskapen kommer fra oven (eller noe). Samtidig så er det ingen som tror at feks Therese Johaug har blitt så god til å stå på ski helt av seg selv (og ingen tror egentlig at det er på grunn av Closterbol-salven heller) – hun har jobbet, målrettet, antatgeligvis. Ingen tror at Magnus Carlsen har fått til det han gjør i sjakk uten hardt arbeid, osv, osv.

Men av en eller annen merkelig grunn så er det litt sånn nei, altså, matte det bare kan du, eller så kan du det ikke.

 

Sånn er det altså ikke. DU kan selv velge om du skal være "smart". (Ja, det fins sikkert enkelte unntak med dyskalkuli og den slags, men det blir selvsagt en annen sak 🙂 )

når du har jobbet superhardt i veldig lang tid, og strøket mange ganger på veien, og det "logiske" ville være å slutte, men du gjør det ikke (noen ganger egentlig uvisst hvorfor), og til slutt disputerer du og blir doktor. #denfølelsen

Hvordan ikke bare gi opp?

Dette er et spørsmål jeg har fått mange ganger opp gjennom årene, fra studenter på alle nivåer, og elever i skolen. Jeg er ikke sikker på om jeg har vært så flink til å svare skikkelig når jeg får disse spørsmålene, og det er jeg lei meg for! Her vil jeg i alle fall si noe:

Noen ganger så må du bare ikke gi opp – dust svar, jeg vet, men sånn er det faktisk. Med "å bare ikke gi opp" tenker jeg på at du noen ganger rett og slett på gå på med krum nakke, selv om du egentlig ikke ser noen grunn til det: Litt som hvis du går gjennom et skikkelig snøvær og er våt og kald og hater livet ditt. Noen ganger funker det kanskje å se for seg varme, men like ofte er det bare, nettopp, å bøye nakken og gå på – gå med bestemte skritt i den retningen du skal. Det er sånn jeg har følt meg når jeg har hatt det tøffest opp igjennom. Jeg er i en snøstorm, og i snøstormen kan du ikke bare legge deg ned – du må fortsette!

Hvis du har et klart mål, eller idé om hva du skal med et fag, eller en eksamen, eller en grad, så er det jo helt supert hvis du kan bruke det som motivasjon. Men for min del har det vært mer sånn at når jeg kommer inn den dette er bare umulig, så er jeg på en måte beyond motivasjon, da er det snøstorm-bildet som må til. Og kanskje litt sånn hvis du først har kommet hit så kan du jo ikke gi opp.


I morgen skal jeg til Larvik, så da blir det tiiidlig opp, og tiiidlig i seng (når jeg er ferdig med å skrive nå så blir det kanskije noe kveldsmat, og så er det sovetid). Også "sees" vi selvsagt i morgen til Formelfredag ♥♥♥

 

2

Siden jeg gikk litt nedover memory lane i går ble det til at jeg tok fram avhandlingen min, og jeg fikk lyst til å dele et bittelite utdrag fra den - oversatt til norsk (bortsett fra kapitteloverskiften 🙂 ). Det som står i patenteser er lagt til nå, for å forklare ting som kanskje ikke er 100% tydelig for alle.

The bridge between nuclear experiments and reactor simulations

Eksperimentell reaktorfysikk (det å faktisk gjøre eksperimenter med en reaktor) er både dyrt og vanskelig å gjennomføre; fordi man trenger arbeidskraft, eksperimentelle fasiliteter (veldig dyrt!), og det faktum at dette tar tid å gjennomføre (skal du teste hvordan brenselet utvikler seg over tre år i en reaktor så tar det faktisk tre år å gjennomføre 😉 ). I tillegg er det veldig vanskelig å faktisk eksperimentelt teste hvordan en reaktor (eller brensel) oppfører seg hvis det skjer en ulykke - som er det man gjerne vil vite. En av verdens ledende fasiliteter på sikkerhetstesting av brensel ligger i Norge; Halden-reaktoren. I denne reaktoren tester de hvordan brenselet oppfører seg i ulykkesscenarier som feks tap av kjøling, men disse testene tar veldig mye tid.

Men, takket være utviklingen av datamaskiner, som har foregått de siste 40-50 årene, har det blitt sånn at reaktorfysikk baserer seg mer og mer på datasimuleringer, enn på faktiske eksperimenter.

Det verste, og mest "spektakulære" eksempelet på en feilslått sikkerhetstest var Tsjernobyl-ulykken i 1986. Her skulle de teste hvordan hovedpumpenen oppførte seg hvis reaktoren mistet tilgang på strøm. Den type test, som altså førte til denne ulykken, burde aldri gjøres i virkeligheten - men kan (og bør!)  gjøres i den virtuelle verden (datasimuleringer).

Jeg valgte å definere det arbeidet (jeg studerte hvordan en type thoriumbrensel oppfører seg etter tre år i en ganske standard reaktor - hvor mye radioaktivt avfall man får, feks) jeg gjorde på datamaskinen som numerimenter. Grunnen til det er at det man faktisk gjør er et eksperiment, bare at det skjer på datamaskinen, og ikke i en labb. Et numeriment er altså et numerisk eksperiment på en datamaskin; det kan bestå av mange simuleringer som gir data, og den videre analysen av disse - akkurat som ved et klassisk eksperiment 🙂 Så vær så god: Dette ordet funker på både norsk og engelsk, og kan brukes på akkurat samme måte som eksperiment; feks skrve jeg både om eksperimentelt oppsett (for jeg gjorde jo også eksperimenter), og numerimentelt oppsett, som forklarte hvordan jeg simulerte brenselet.

 


Ellers har jeg fått skikkelig skrivedilla nå - endelig! Det er bokskriving det går i, både i går og i dag...det kan virke som om jeg omsider (heldigvis!) er klar for et nytt, stort prosjekt, ett år etter at jeg leverte det forrige fra meg ♥

I går dukket det opp et minne i Facebook-feeden min - et blogginnlegg med tittelen "I dag leverer jeg":

Da jeg delte det på Facebook (den 16. januar 2017) skrev jeg riktignok et *håpe* i en parentes, så helt sikker var jeg tydeligvis ikke. Det hadde jeg helt rett i, for det håpet ble knust: Det ble ingen PhD-levering den dagen. Istedefor kom jeg hjem med superbøyd nakke en eller anne gang på kvelden, tok av meg ytterklærne, krøp opp i sengen, la meg i fosterstilling (ja, helt seriøst!) og hulkegråt. Jeg blir aldri ferdig! ropte jeg til Anders - og jeg trodde faktisk på det.

Den 17. januar leverte jeg avhandlingen. Det virket altså ikke sånn dagen før, og jeg var så langt nede da jeg måtte gå hjem den 16. januar uten å ha levert. det var som verdens største nederlag, og jeg klarte ikke å forstå hvor jeg skulle finne flere mentale krefter til å ikke gi opp (16. janaur var ikke den første datoen jeg hadde satt som rimelig sikkert at den dagen, da leverer jeg, for å si den sånn)... Men jeg kom i mål, for jeg hadde en som heiet på meg, og dyttet i meg kaffe morgenen etter og dyttet meg ut døren. Faktisk kom jeg i mål ikke mange timene etter at jeg kom meg på Blindern, den 17. janar for nøyaktig ett år siden.

Det å lever doktoravhandlingen var virkelig helt surrealistisk! Å ha jobbet så lenge, og så endelig komme i mål. Nei, da, jeg var ikke i mål med doktorgraden "bare" ved å levere, men ekstremt mye er gjort når du faktisk levere avhandling - uten tvil en stor milepæl! Etter levering ble det Champagne på kontoret, sammen med Gry (snilletse Gry, som jeg delte kontor med, og som virkelig var en kjempestøtte gjennom PhD-arbeidet), Anders (♥), godeste Vibeke, og selvsagt veileder-Sunniva. Det var så fint, og den tomme Champagne-flasken står fremdeles i hyllen på kontoret der jeg sitter nå. Tror den blir et minne for livet 🙂


Og så må jeg selvsagt også gratulere lillesøster Carina med dagen; i dag er det ikke bare ett år siden jeg leverte avhandlingen, det er også 28 år siden jeg ble storesøster, så det er selvsagt med på å gjøre dagen ekstra spesiell ♥ Carina er kanskje den tøffeste jeg vet om; med to små barn, masterstudier i biologi (*stolt storesøster*), pluss pluss pluss... Om en 4-5 års tid er det kanskje Carina som drar seg opp på Blindern og leverer fra seg en doktoravhandling (da i såfall om alger). Jeg krysser fingrene, og heier, uansett.

Gratulerer med dagen, Carina, jeg er glad i deg!

♥♥♥

1

Åh, dette er altså såååå spennende! Som godeste (tidligere) kjernefysikerkollega Cecilie sa det: This is better than Christmas Eve!!! (Ja, hun hadde med tre utropstegn 😉 )

Husker dere årets Nobelpris, som handlet om gravitasjonsbølger? Vel, jeg har faktisk gått rundt med en liten plan for et innlegg som skulle handle om hva man kan bruke gravitasjonsbølger til, og nå har vi plutselig fått det ultimate eksempelet... Mandag ettermiddag ble det nemlig kjent at man har "sett" to nøytronstjerner som kræsjer, ved at man har sett gravitasjonsbølgene fra dette kræsjet (akkurat som at du kan se bølgene fra et stort skip, og man kan se at det er bølger som er fra akkurat et så og så stort skip, liksom).

Grunnen til at dette er stort er at endelig har man fått et klart bevis for for hvor og hvordan de tyngste grunnstoffene våre dannes: De siste 30 årene, ca, har man hatte en hypotese om at grunnstoffer som er tyngre enn jern (gull, feks, eller thorium, eller uran) lages når to nøytronstjerner kolliderer, men i lenge ble den hypotesen sett på som for usannsynlig. I løpet av de siste, kansje ti, årene har hypotesen om nøytronstjerner blitt sterkere og sterkere, men man har aldri sett at det har skjedd. Siden fysikk faktisk er et fag som handler om naturen og eksperimenter og observasjoner, så liker man jo helst å se ting, så det med nøytronstjernene har vært et stort spørsmål, og man har liksom hååååpet at man skulle få se det en dag. Og nå har altså dagen kommet ♥

Oppskriften på gull er enkel (sånn ingrediensmessig, i alle fall): Du trenger 79 protoner, og 118 nøytroner. Og selvsagt er utstyret veldig viktig her; for å for å få det til holder det ikke med noen vanlig stjerne, her må man på med noe skikkelig heftig, altså to nøytronstjerner som kræsjer sammen.

Når to nøytronstjerner kræsjer så bygges faktisk de tunge grunnstoffene med bare nøytroner først - litt som at du har bare hvite legoklosser også setter du dem sammen superfort, og mens du driver med det så blir fler og fler av dem til røde legoklosser, og til slutt så får du feks gull, med sine 79 protoner (røde legoklosser) og 118 nøytroner (hvite legoklosser). Måten nøytronene faktisk blir til proteoner skjer ved beta minus-henfall.

Karbonet i bildet over er superenkelt: Da trenger du bare 12 protoner og 12 nøytroner, og det kan lages i en helt vanlig stjerne, som solen vår (fineste solen, da ♥).

Så i vanskelighetsgrad vil jeg si at for gull - MEGET HØY, og karbon - MIDDELS til LAV.

Jeg syns jo denne oppdagelsen, eller observasjonen, er litt ekstra gøy siden dette var tema for prøveforelesningen min på disputasen, og der (en av) konklusjon(ene) var at de tyngste grunnstoffene antageligvis ikke lages i supernovaeksplosjoner (den gamle hypotesen), og at kolliderende nøytronstjer nå blir sett på som det mest sannsynlige fødestedet - men at man dessverre aldri hadde observert to nøytronstjerner som kræsjer... MEN NÅ HAR MAN ALTSÅ DET♥♥♥♥♥ (...og jeg slipper å føle meg dum over at jeg tok feil da jeg disputerte 😉 )

 

Med oppdagelsen av gravitasjosnbølger, altså årets nobelpris, hadde man et lite håp om at man skulle få se nøytronstjerner som kræsjet - hvis de fantes. Ofte tar sånt lang tid, men altså ikke denne gangen!


PS: Dette innlegget er på ingen måte en full forklaring av nøytronstjerner eller dannelse av tunge grunnstoffer, eller noenting, egentlig - still gjerne spørsmål hvis det er ting dere vil at jeg skal forklare nærmere ♥♥♥

Hei lørdag!

Nå har det gått slag i slag her, og jeg har rett og slett ikke rukket å stikke innom bloggen siden onsdag, da jeg fortalte at jeg skulle bli doktorkreert på torsdag. Vel, jeg (og ca 100 andre kandidater) ble kreert, og fikk diplomet vårt fra rektor, og det var veldig stor stas ♥ Jeg delte en god del på Snapchat (følg meg gjerne, jeg heter sunnivarose), og deler like gjerne snapstoryen fra denne torsdagen med dere her.