Hopp til innhold

1

First of all, the most important message to day is: MERRY CHRISTMAS to all my wonderful, fantastic readers - I love you all!
-------------------------------------------------------------
To follow up on the last blog post about stars, here are two more facts about stars that I think suits the theme of this day (my favourite day of the year):
1) There is no “Star of Bethlehem”, or "Christmas star". What the wise men probably saw on their way to meet baby Jesus, was Halley's comet (there are other theories as well, but I like the comet theory 🙂 ), which was visible 11 or 12 years BC.
We told Alexandra this the other day, and she replied by instructing us to change the word "star" into "comet" in the songs 😀 (For the record: I have no trouble singing "star" - this was her choice...)
2) The most poetic fact is that we are all made of star dust (or we can call it starstuff), and Carl Sagan said it so beautifully and fantastic, I will just finish this holiday blog post with his words:

Hi everyone, sorry I've been quiet since Sunday! I was planning to share my plan of the week on Monday, but then the day just sort of disappeared, and I really don't know what happened to the rest of the week either (I know that yesterday disappeared since I was in charge of the nuclear physics group's christmas party, and this weekend, including today, I'm at Trysil, but Monday, Tuesday, and Wednesday I really don't know...:/)
Anyway, here are 10 facts about Beta radiation, since today is Friday and it's rime for facts (read about Alpha radiation HERE):
  1. beta radiation consists of particles - you can call it betas, beta particles or beta radiation.
  2. beta particles (or betas or beta radiation) is just exactly the same as electrons - beta particles are free electrons.
  3. you can have either beta plus or beta minus radiation (so it's actually not exactly true that beta particles are electrons, because if they're beta plus particles, then they're positrons, and if they're beta minus, then they're electrons).
  4. I think beta decay (the process where a nucleus emits a beta particle) is really weird: I mean, a neutron actually changes into a proton (or a proton changes into a neutron, if it's a beta plus).
  5. beta minus decay is also called electron emission, and beta plus decay is called positron emission.
  6. when a nucleus emits (sends out) a beta particle, it transforms into a nucleus that has a higher proton number (hydrogen would for example turn into a helium nucleus, since helium has one more proton than hydrogen) - this also means, that, yes, you can make gold from platinum, that has one less proton than gold.
  7. beta particle a are sometimes relativistic - that means that they move with a speed that's close to the speed of light, and that makes them seriously difficult to deal with (for instance theoretical calculations).
  8. if the beta particle is emitted in air, it usually moves a few meters before it is stopped (it has a range of a couple of meters in air). In water it moves only a few centimeters. This means they're quite easy to shield yourself from...
  9. most fission products emit beta (minus) radiation.
  10. beta radiation can cause actual "burns" on your skin; you can see (and feel) that your skin turns red, if you're very close to an intense source of beat radiation.

We just finished this week's experiment, where we used alphas to learn more about zirkonium, and therefore I thought that today I have to give you 10 Friday Facts about ALPHA RADIATION (a couple of weeks ago I wrote about radiation in general, you can read that blogpost HERE):
2 proton (p) + 2 neutrons (n) = alpha particle = helium nucleus
  1. Alpha radiation is one of the types of particle radiation - alpha radiation is like a stream of alpha particles (I change all the time between calling it just alphas, alpha particles, or alpha radiation - they're all the same 🙂 )
  2. An alpha particle is exactly the same as a helium nucleus (so, a helium atom stripped of its electrons)
  3. A helium nucleus consists of 2 protons and 2 neutrons - meaning that an alpha particle consists of two protons and two neutrons
  4. Alpha particles/radiation have a very short range - meaning they can't move very far; for example they only get a couple of centimetres in air
  5. Since the alpha particles have such a short range, it means that they are very easy to shield yourself, or protect yourself, from 
  6. If you get something (a source) in your body that emits alpha particles, this can be quite bad, since basically none of the alphas will get out of your body, and all their energy will be deposited inside your body
  7. Radon is an example of a radioactive gas that emits alpha radiation
  8. As long as whatever material that emits alphas is on the outside of your body, it can't hurt you (if the only problem with this material is that it emits alphas, of course)
  9. If I hold some material that emits alpha radiation in my hand, I won't get any dose (from radiation) to my hand (except from the part of my skin which is already dead, but I don't really care about whether or not my dead skin cells are exposed to a radiation dose ;))
  10. Heavy, unstable nuclei can emit an alpha particle to become a little bit lighter, and therefore more stable - ie, it's a little bit like "chopping" off a small part of the nucleus (like you have an apple, and you take a knife and you chop off a small part, then you have a little smaller apple and a piece of the apple)
helium atom: alpha particle + 2 electrons <3

6

Today's Friday Facts are not really facts (they are just highly my opinion...;) ), but my list of the top ten places to visit around the world, as a nuclear/reactor physicist. I'm not sure about the order, so that's quite random (except I think to me Chernobyl really is number one - I can't believe we didn't manage to go there when we were in Kiev two years ago).

1. Chernobyl - Ukraine
2. La Hague - France
3. Sellafield - UK
4. Olympic Dam - Australia
5. Olkiluoto - Finland
6. Fukushima - Japan
7. Three Mile Island - USA
8. Los Alamos - USA
9. Hirsohima - Japan
10. CERN - Switzerland

Now you know where to go when you're planning your next vacation 😉

The only place I can cross off the list is Hirsohima. I went there when we made Sushi and Nuclear last year. It was actually quite emotional to go there - it felt a little bit like a continuous punch in the stomach, to walk around the A-bomb Dome, which they left as it was after the bombing.

So, do you agree on my list? Or should some of the places be replaced?

2

Today I just wanted to tell you a little bit about neutrons, and why I think they're the coolest. You know, in a way they're like a Chanel purse - classical, and never out of style 😉
speaking of Chanel: I've been thinking that I should buy a black Chanel purse as a gift for my self when I have finished my PhD, but maybe I should consider the pink one instead...?
So here are my ten reasons why I think neutrons are really cool:
  1. Neutrons have no charge
  2. They decide if an atom is stable or radioactive
  3. A single neutron can sneak its way into a nucleus and make fission <3
  4. It's an unstable particle with a half life of a little bit more than 10 minutes
  5. I sort of envision them as white dots, or tiny billiard balls...
  6. A free neutron turns into hydrogen (meaning that the neutron is actually a radioactive particle - radioactivity is just soooo fascinating 😀 )
  7. Neutrons are the "flame" in the fuel of a nuclear reactor
  8. Neutrons gives different doses (of radiation) depending on their  energy 
  9. You can make a neutron from a proton and a proton from a neutron (almost sounds like witchcraft, or something)
  10. If neutrons have the right energy, they can do quite a lot of damage - but you can just use normal water as a shield, and you're fine 😉
I just love them - neutrons are without doubt my favorite. They're fabulous ✨

Do you have a favorite particle?

-------------------------------------------------

PS: I am working on Question of the month (which is actually not a nuclear physics one this first time) - the plan was to publish it yesterday, but since I (unfortunately? 😛 ) have another job than just being a blogger, I haven't been able to finish it yet , and I'm really sorry :/ However, I'm still inside my own "limits", since I said it would come this week, and even though it's Friday, it's not the end of the week just yet 😉

Hi there, Friday!

Last week there were no FACTS on FRIDAY, but this week we're back on track again 😀 Today I think it's time to talk about the force - the nuclear force: 10 facts about the nuclear force, here you go!
  1. the nuclear force is the force that holds, or binds, a nucleus (of an atom) together, even though all the protons in it are being pushed apart by another force - the protons are like extremely strong magnets with the same pole; they repel each other
  2. without the nuclear force, there wouldn't be any nuclei; without nuclei there wouldn't be atoms, and without atoms there wouldn't be molecules; without the nuclear force there would be no life - no nothing, really, and you couldn't exist...!
  3. it is the strongest of the four fundamental forces, and it's really strong (the three others are electromagnetic force, gravity, and weak force); for example it is 137 times stronger than the elctromagnetic force, and compared to gravity, it is a 1000 million million million million million million (1000000000000000000000000000000000000000) times stronger!
  4. the nuclear force has a very short range - meaning that it only works when a particle "touches" a nucleus; or, in other words: if you get 0.000000000000001 meters from the center of a nucleus, you can't feel it anymore. This distance is called femtometer
  5. when you fission a heavy nucleus, you release some of the force that holds this nucleus together, and since it is so strong, you get soooo much energy from fission
  6. "strong force" is another word for the nuclear force (in Norwegian: "sterk kjernekraft")
  7. when you fuse two light nuclei (make a new nucleus by putting two nuclei together), you also release some of the nuclear force - and therefore you can get energy from fusion, like the sun does it 🙂
  8. it was after Chadwick discovered that there were neutrons (with no electric charge) inside the nucleus, in 1932, that the physicists discovered the nuclear force - neutrons don't feel the elctromagnetic force, like protons (or electrons, that have electric charge) do, and therefore it had to be something else that was holding the nucleus together...
  9. the nuclear force doesn't really care if a particle has a charge or not; the force between two protons, two neutrons, or a proton and a neutron are nearly the same <3
  10. we still don't understand everything about the nuclear force, even though has been worked on for eight decades...

Don't forget about "Question of the month" next week; I already have some very nice questions, but please, ask more!

Ok, I think that's it for now - I have to go back to my figures and my tables, and then there is the weekly nuclear physics group meeting... Bon weekend, and may the force be with you <3

2

Friday again!

This week that means Bergen, and as (almost) always that means FACTS. This week I want to give you ten facts about nuclear weapons and the "Megatons to Megawatts" project - a little "taster" of what my talk tomorrow will be about (I don't know if there will be a live stream yet, but at least the entire confernce will be filmed, and go on-line later - I will of course share the link when it's ready 😉 )

 

  1. nuclear weapons have been used against humans two times; Hiroshima August 6th and Nagasaki August 9th, 1945 - hopefully NEVER again
  2. both "Little Boy" and "Fat Man" were fission bombs (getting their energy from fission); "Little Boy" was made of highly enriched uranium (uranium-235), and "Fat Man" was made of plutonium(-239)
  3. after WWII a nuclear arms race begun between the US and the Sovjet Union, and at one time there were more than 60 000 nuclear weapons in the world
  4. a nuclear weapon is ugly, but by mixing the fissile material in it with uranium or thorium, it can be changed into beautiful nuclear fuel (100% normal nuclear fuel for normal reactors) <3
  5. the "Megatons to Megawatts" program was an agreement between US and Sovjet/Russia that lasted from 1993 to 2013, where Sovjet made fuel out of their weapons (unfortunately not all of them) and US bought it
  6. during those 20 years (1993-2013), 500 tonnes of highly enriched uranium, from 20 000 Russian nuclear weapons have been converted into nuclear fuel and "burned" in reactors (more than 2 weapons destroyed every day!)
  7. the electricity generated from these weapons is the same amount as all the electricity in the US in two years(!)
  8. weapons uranium (highly enriched uranium) could be mixed with natural uranium to make fuel (as has been done in the program) - or, even better, with thorium
  9. if you mix weapons uranium with thorium, you can also recycle the spent fuel; this means that not only do you get rid of horrible weapons, you also get rid of a lot of nuclear waste (WIN WIN 😀 )
  10. today there are around 16 000 nuclear weapons in the world - much better than 65 000 (or whatever the peak number was), but still that's definitely 16 000 too many...:/
 -------------------------------------------------------------------------------
(I bite my lip when I concentrate - haha)

 

 Now I'm soon off to NHH, where the conference tomorrow will be held, for sound check, and just "feel" the stage. And when I come back to the hotel again, Anders will be here! I'm so incredibly happy he could join me here in Bergen this weekend!!! We're here until Sunday afternoon, so hopefully we'll have time to actually experience something while we're here - any recommendations from my readers?
Anyway: happy weekend to everyone <3

1

TGIF, since that means 10 more facts. This week I just have to tell you little bit about fusion - Fusion on a Friday 😉 Hope you enjoy it!
  1. Fusion is when two (light) nuclei merge (fuse) together to form a heavier nucleus - it's the opposite of fission. (Read more about fission HERE and HERE)
  2. When very light (atomic) nuclei, like for example hydrogen and hydrogen, or helium and helium, or hydrogen and helium, fuse, they produce energy 😀 😀
  3. The sun (and all other stars in the universe) get their energy from nuclei that are fusing (like hydrogen and hydrogen, or helium and helium, or hydrogen and helium - or other nuclei)
  4. The different elements in the periodic table (up to iron) are made from fusion in stars/suns (but the heavier ones, like gold, or thorium, or uranium, for example are made in the big explosions in space)
  5. If you check the mass of the nuclei you start out with, and the mass of the nucleus you get after the fusion (so, checking how much they weigh, that is), it weighs less after the fusion than before - this extra mass that suddenly is "gone" hasn't really disappeared, but it is released as energy <3 E=mc2 <3
  6. It would be really really cool if we could produce energy from fusion, like the sun is doing - but so far we can't do it...:/ (We manage to get nuclei to fuse, but we use more energy than what we get out.)
  7. Since nuclei is made out of protons and neutrons, they have a positive charge, and therefore they REALLY don't want to get so close to each other that they fuse - it's like trying to push the same pole of two extremely strong magnets together; it doesn't work (but it does work in the sun, since it's very hot and very high pressure, so there the nuclei just fuse all the time :D)
  8. I think it's really fascinating, and a little weird, that you get all this energy from two opposite reactions - either by fusing light nuclei, or splitting heavy ones... <3 nature <3
  9. If you managed to make a fusion power plant, you wouldn't have the problem with radioactive waste, that you get from a fission power plant (a normal nuclear power plant) - so that's very nice...
  10. ...however, fusion is hard :/ We don't manage to do it (without putting more energy in than we get out) yet; but who knows what will happen in the future...? 😉
------------------------------------------------------
Yesterday was date night with my Handsome - we went to Champagneria at Mathallen (our favourite place these days, I think), snacked tapas and drank their delicious self imported Cava (nom nom nom) <3 
He just left for a cabin trip with a friend, and Alexandra and me already miss him...but we will have nice weekend together too, and it will be even better to see him again on Sunday <3<3<3
Happy weekend everyone!

It’s been a long time since I did a “10 facts” blog post (last one was about heavy water) - too long, I think, so it’s about time I do it again now 😉
I can’t promise there’ll one every week (I’ve tried those every week kind of blog posts before, and there’s always some reason - like my PhD work - why it’s difficult to see it through ), but it would have been fun if 10 facts could be like a Friday thing. Anyway, we’ll see how it goes, but today is Fission Friday; here are ten facts about fission:
  1. fission is when a (heavy) nucleus splits into two (lighter) nuclei
  2. an example of fission is when uranium-235 is hit by one neutron and becomes barium-144, krypton-90, and 2 free neutrons (same number of particles before and after fission: 1+235 = 144+90+2 = 236 :D)
  3. the light nuclei (like barium and krypton) are called fission products
  4. fission can be induced, which means that it happens because a neutron hits the nucleus (like in the picture) - a little bit like the neutron is a knife that cuts the nucleus into two pieces <3
  5. fission can be spontaneous, which means it just happens - no neutron or other particle hitting the nucleus - the nucleus just suddenly splits
  6. fission is my favourite decay mode (I think) <3<3<3
  7. a nucleus that will fission when it’s hit by a neutron is called (a) fissile (nucleus)
  8. the energy that is released in fission (when one nucleus splits) is 200 mega electron volts - which is the same as if 50 million carbon atoms burns and produces CO2 (yes, 1 versus 50 million to get the same amount of energy!)
  9. most of the energy released in fission comes from kineticc energy of the fission products - which is energy from motion of the fission products (they are moving fast away from each other)
  10. I think the energy release in fission is really really fascinating
If you think it's a good idea to do more "10 facts" blog posts, please tell me what you what you want to read about <3

Ok, I gotta run now, to catch my flight back to Oslo - since I've been giving a talk about motivation for science in Bodø today. If you follow me on Snapchat (sunnivarose), you can see the super cool LEGO rose i got after the talk (the talk was for First Lego League, so it was 100% right to get a rose made out of LEGO :D).

2

So yesterday I was interviewed by the newspaper Dagbladet about heavy water (since they´ve made this new show about the Norwegian heavy water and how they bombed the factory during world war 2 - love the show, btw 😀 ), and I was thinking It´s really long since I´ve had a "10 facts" blogpost, and I think this is the perfect occasion! I therefore give you 10 facts about heavy water <3 <3 <3

  1. Heavy water is heavy - around 10% heavier than light water (as a nuclear physicist working with reactors I actually call normal water for light water :V)
  2. Heavy water is chemically called D2O, instead of H2O (normal/light water)
  3. The D in D2O is for deuteron
  4. A deuteron is a heavy version of hydrogen (an isotope of hydrogen), and it´s heavier because it has a neutron in its nucleus in addition to the proton (normal hydrogen has only that one proton in its nucleus) - thus a deuteron is twice as heavy as a hydrogen
  5. Heavy water can be used as a moderator (something that slows down the speed neutrons) in a nuclear reactor (this is what the Germans wanted it for during WW2)
  6. If you use heavy water in a reactor you can run it on natural uranium - you don´t have to enrich the uranium (like the Americans were doing in the Manhattan project)
  7. Heavy water doesn´t "eat" neutrons, like light water does - which is why we love <3 it
  8. Germany wanted to make plutonium - and it´s a really good idea to do this in a reactor with heavy water and natural uranium
  9. Norway doesn´t produce heavy water anymore, but we use it in our two research reactors, in Kjeller and Halden 😀
  10. India are researching reactors using heavy water and thorium - which is really cool!
------------------------------------------------
This is a picture of me, wearing a kimono, writing about heavy water in my living room: