Hi there, Friday!

Last week there were no FACTS on FRIDAY, but this week we're back on track again 😀 Today I think it's time to talk about the force - the nuclear force: 10 facts about the nuclear force, here you go!
  1. the nuclear force is the force that holds, or binds, a nucleus (of an atom) together, even though all the protons in it are being pushed apart by another force - the protons are like extremely strong magnets with the same pole; they repel each other
  2. without the nuclear force, there wouldn't be any nuclei; without nuclei there wouldn't be atoms, and without atoms there wouldn't be molecules; without the nuclear force there would be no life - no nothing, really, and you couldn't exist...!
  3. it is the strongest of the four fundamental forces, and it's really strong (the three others are electromagnetic force, gravity, and weak force); for example it is 137 times stronger than the elctromagnetic force, and compared to gravity, it is a 1000 million million million million million million (1000000000000000000000000000000000000000) times stronger!
  4. the nuclear force has a very short range - meaning that it only works when a particle "touches" a nucleus; or, in other words: if you get 0.000000000000001 meters from the center of a nucleus, you can't feel it anymore. This distance is called femtometer
  5. when you fission a heavy nucleus, you release some of the force that holds this nucleus together, and since it is so strong, you get soooo much energy from fission
  6. "strong force" is another word for the nuclear force (in Norwegian: "sterk kjernekraft")
  7. when you fuse two light nuclei (make a new nucleus by putting two nuclei together), you also release some of the nuclear force - and therefore you can get energy from fusion, like the sun does it 🙂
  8. it was after Chadwick discovered that there were neutrons (with no electric charge) inside the nucleus, in 1932, that the physicists discovered the nuclear force - neutrons don't feel the elctromagnetic force, like protons (or electrons, that have electric charge) do, and therefore it had to be something else that was holding the nucleus together...
  9. the nuclear force doesn't really care if a particle has a charge or not; the force between two protons, two neutrons, or a proton and a neutron are nearly the same <3
  10. we still don't understand everything about the nuclear force, even though has been worked on for eight decades...

Don't forget about "Question of the month" next week; I already have some very nice questions, but please, ask more!

Ok, I think that's it for now - I have to go back to my figures and my tables, and then there is the weekly nuclear physics group meeting... Bon weekend, and may the force be with you <3


Friday again!

This week that means Bergen, and as (almost) always that means FACTS. This week I want to give you ten facts about nuclear weapons and the "Megatons to Megawatts" project - a little "taster" of what my talk tomorrow will be about (I don't know if there will be a live stream yet, but at least the entire confernce will be filmed, and go on-line later - I will of course share the link when it's ready 😉 )


  1. nuclear weapons have been used against humans two times; Hiroshima August 6th and Nagasaki August 9th, 1945 - hopefully NEVER again
  2. both "Little Boy" and "Fat Man" were fission bombs (getting their energy from fission); "Little Boy" was made of highly enriched uranium (uranium-235), and "Fat Man" was made of plutonium(-239)
  3. after WWII a nuclear arms race begun between the US and the Sovjet Union, and at one time there were more than 60 000 nuclear weapons in the world
  4. a nuclear weapon is ugly, but by mixing the fissile material in it with uranium or thorium, it can be changed into beautiful nuclear fuel (100% normal nuclear fuel for normal reactors) <3
  5. the "Megatons to Megawatts" program was an agreement between US and Sovjet/Russia that lasted from 1993 to 2013, where Sovjet made fuel out of their weapons (unfortunately not all of them) and US bought it
  6. during those 20 years (1993-2013), 500 tonnes of highly enriched uranium, from 20 000 Russian nuclear weapons have been converted into nuclear fuel and "burned" in reactors (more than 2 weapons destroyed every day!)
  7. the electricity generated from these weapons is the same amount as all the electricity in the US in two years(!)
  8. weapons uranium (highly enriched uranium) could be mixed with natural uranium to make fuel (as has been done in the program) - or, even better, with thorium
  9. if you mix weapons uranium with thorium, you can also recycle the spent fuel; this means that not only do you get rid of horrible weapons, you also get rid of a lot of nuclear waste (WIN WIN 😀 )
  10. today there are around 16 000 nuclear weapons in the world - much better than 65 000 (or whatever the peak number was), but still that's definitely 16 000 too many...:/
(I bite my lip when I concentrate - haha)


 Now I'm soon off to NHH, where the conference tomorrow will be held, for sound check, and just "feel" the stage. And when I come back to the hotel again, Anders will be here! I'm so incredibly happy he could join me here in Bergen this weekend!!! We're here until Sunday afternoon, so hopefully we'll have time to actually experience something while we're here - any recommendations from my readers?
Anyway: happy weekend to everyone <3


TGIF, since that means 10 more facts. This week I just have to tell you little bit about fusion - Fusion on a Friday 😉 Hope you enjoy it!
  1. Fusion is when two (light) nuclei merge (fuse) together to form a heavier nucleus - it's the opposite of fission. (Read more about fission HERE and HERE)
  2. When very light (atomic) nuclei, like for example hydrogen and hydrogen, or helium and helium, or hydrogen and helium, fuse, they produce energy 😀 😀
  3. The sun (and all other stars in the universe) get their energy from nuclei that are fusing (like hydrogen and hydrogen, or helium and helium, or hydrogen and helium - or other nuclei)
  4. The different elements in the periodic table (up to iron) are made from fusion in stars/suns (but the heavier ones, like gold, or thorium, or uranium, for example are made in the big explosions in space)
  5. If you check the mass of the nuclei you start out with, and the mass of the nucleus you get after the fusion (so, checking how much they weigh, that is), it weighs less after the fusion than before - this extra mass that suddenly is "gone" hasn't really disappeared, but it is released as energy <3 E=mc2 <3
  6. It would be really really cool if we could produce energy from fusion, like the sun is doing - but so far we can't do it...:/ (We manage to get nuclei to fuse, but we use more energy than what we get out.)
  7. Since nuclei is made out of protons and neutrons, they have a positive charge, and therefore they REALLY don't want to get so close to each other that they fuse - it's like trying to push the same pole of two extremely strong magnets together; it doesn't work (but it does work in the sun, since it's very hot and very high pressure, so there the nuclei just fuse all the time :D)
  8. I think it's really fascinating, and a little weird, that you get all this energy from two opposite reactions - either by fusing light nuclei, or splitting heavy ones... <3 nature <3
  9. If you managed to make a fusion power plant, you wouldn't have the problem with radioactive waste, that you get from a fission power plant (a normal nuclear power plant) - so that's very nice...
  10. ...however, fusion is hard :/ We don't manage to do it (without putting more energy in than we get out) yet; but who knows what will happen in the future...? 😉
Yesterday was date night with my Handsome - we went to Champagneria at Mathallen (our favourite place these days, I think), snacked tapas and drank their delicious self imported Cava (nom nom nom) <3 
He just left for a cabin trip with a friend, and Alexandra and me already miss him...but we will have nice weekend together too, and it will be even better to see him again on Sunday <3<3<3
Happy weekend everyone!

It’s been a long time since I did a “10 facts” blog post (last one was about heavy water) - too long, I think, so it’s about time I do it again now 😉
I can’t promise there’ll one every week (I’ve tried those every week kind of blog posts before, and there’s always some reason - like my PhD work - why it’s difficult to see it through ), but it would have been fun if 10 facts could be like a Friday thing. Anyway, we’ll see how it goes, but today is Fission Friday; here are ten facts about fission:
  1. fission is when a (heavy) nucleus splits into two (lighter) nuclei
  2. an example of fission is when uranium-235 is hit by one neutron and becomes barium-144, krypton-90, and 2 free neutrons (same number of particles before and after fission: 1+235 = 144+90+2 = 236 :D)
  3. the light nuclei (like barium and krypton) are called fission products
  4. fission can be induced, which means that it happens because a neutron hits the nucleus (like in the picture) - a little bit like the neutron is a knife that cuts the nucleus into two pieces <3
  5. fission can be spontaneous, which means it just happens - no neutron or other particle hitting the nucleus - the nucleus just suddenly splits
  6. fission is my favourite decay mode (I think) <3<3<3
  7. a nucleus that will fission when it’s hit by a neutron is called (a) fissile (nucleus)
  8. the energy that is released in fission (when one nucleus splits) is 200 mega electron volts - which is the same as if 50 million carbon atoms burns and produces CO2 (yes, 1 versus 50 million to get the same amount of energy!)
  9. most of the energy released in fission comes from kineticc energy of the fission products - which is energy from motion of the fission products (they are moving fast away from each other)
  10. I think the energy release in fission is really really fascinating
If you think it's a good idea to do more "10 facts" blog posts, please tell me what you what you want to read about <3

Ok, I gotta run now, to catch my flight back to Oslo - since I've been giving a talk about motivation for science in Bodø today. If you follow me on Snapchat (sunnivarose), you can see the super cool LEGO rose i got after the talk (the talk was for First Lego League, so it was 100% right to get a rose made out of LEGO :D).


So yesterday I was interviewed by the newspaper Dagbladet about heavy water (since they´ve made this new show about the Norwegian heavy water and how they bombed the factory during world war 2 - love the show, btw 😀 ), and I was thinking It´s really long since I´ve had a "10 facts" blogpost, and I think this is the perfect occasion! I therefore give you 10 facts about heavy water <3 <3 <3

  1. Heavy water is heavy - around 10% heavier than light water (as a nuclear physicist working with reactors I actually call normal water for light water :V)
  2. Heavy water is chemically called D2O, instead of H2O (normal/light water)
  3. The D in D2O is for deuteron
  4. A deuteron is a heavy version of hydrogen (an isotope of hydrogen), and it´s heavier because it has a neutron in its nucleus in addition to the proton (normal hydrogen has only that one proton in its nucleus) - thus a deuteron is twice as heavy as a hydrogen
  5. Heavy water can be used as a moderator (something that slows down the speed neutrons) in a nuclear reactor (this is what the Germans wanted it for during WW2)
  6. If you use heavy water in a reactor you can run it on natural uranium - you don´t have to enrich the uranium (like the Americans were doing in the Manhattan project)
  7. Heavy water doesn´t "eat" neutrons, like light water does - which is why we love <3 it
  8. Germany wanted to make plutonium - and it´s a really good idea to do this in a reactor with heavy water and natural uranium
  9. Norway doesn´t produce heavy water anymore, but we use it in our two research reactors, in Kjeller and Halden 😀
  10. India are researching reactors using heavy water and thorium - which is really cool!
This is a picture of me, wearing a kimono, writing about heavy water in my living room:

I dag er det 35 år siden Three Mile Island-ulykken; det som var den nest mest alvorlige ulykken etter Tsjernobyl, fram til Fukushima-ulykken i 2011. Så nå er det den tredje mest alvorlige ulykken - og selvsagt er den miiiilevis unna Tsjernobyl i alvorlighetsgrad...!

Jeg har ikke skrevet noe om Three Mile Island-ulykken her på bloggen før, og det begynner egentlig å bli på høy tid (jeg har en del å lese meg opp på her 😉 ), så i anledning jubileet og det herlige været i Oslo i dag, og at det er fredag, syns jeg det er lite som passer bedre enn 10 FAKTA om Three Mile Island 😉

TMI. Til venstre er TMI-2 (som ikke har vært i drift siden 1979), og til høyre er TMI-1

  1. Three Mile Island forkortes til TMI, og siden det var to reaktorer på anlegget kalles de for TMI-1 og TMI-2 - begge to er/var trykkvannsreaktorere med vanlig (lett)vann som kjølemiddel (og moderator)
  2. Anlegget der TMI-1 og -2 ligger er i Dauphin County i Pennsylvania i USA
  3. Ulykken som skjedde på TMI-2 likner en del på Fukushima-ulykken - med det at man fikk dannet hydrogengass og sånn; men ulykken i Japan var mye mer alvorlig :/
  4. TMI-2reaktoren hadde bare vært i drift i noen måneder (siden desember 1978) da den tidlig på morgenen den 28. mars 1979 ble utsatt for en Loss Of Coolant-ulykke (LOCA)
  5. LOCA er (sammen med LOFA - Loss Of Flow Accident - som var det som skjedde på Fukushima) det verste som kan skje med et (moderne) kjernekraftverk 🙁
  6. Siden reaktoren mistet kjølevannet sitt smeltet deler av (reaktor)kjernen/brenselet (en tredjedel)
  7. Ingen mennesker døde i dette som altså er den tredje verste ulykken i kjernekrafthistorien, og det har heller ikke vært detekterbare helseeffekter (som ikke går på stress og sånn, i alle fall) <3
  8. Da brenselet smeltet kom det ut (radioaktive) fisjonsprodukter, og noe av dette ble sluppet ut fra kraftverket - men det var så lite at det ikke ga noen dose til de som bodde i nærheten som var høyere enn bakgrunnsstrålingen
  9. Det ble veldig veldig varmt i reaktoren ettersom en del av kjølevannet forsvant, og da reagerte zirkoniumsinnkapslingen på brenselet med det som var igjen av vannet, og det ble dannet hydrogengass - sånn som i Fukushima (men uten noen eksplosjon, da 🙂 )
  10. Selv om masse av brenselet ble superhot og smeltet virket selve reaktortanken som den skulle - den ble ikke ødelagt (ikke slik at den smeltede brenselsmassen slapp ut, i alle fall), og holdt coriumet (smeltet brensel) på plass. Ikke noe "China Syndrome" mao. 😉

Sånn ser en prinsippskisse av en trykkvannsreaktor ut, ganske generelt - selv om dette er Three Mile Island reaktor nummer 2 spesielt <3<3<3


Et kjernekraftverk KAN IKKE eksplodere som en atombombe. Man kan altså IKKE få en kjernefysisk eksplosjon fra et kjernekraftverk, og det er et FAKTUM. 
Ikke det at det er greit at man feks får en dampeksplosjon som i Tsjernobyl, eller hydrogengasseksplosjon som i Fukushima - men det er allikevel ikke kjernefysiske eksplosjoner det er snakk om. De ca 450 kjernekraftverkene vi har rundt omkring i verden er altså ikke tikkende atombomber 😉 Det er faktisk fysisk umulig å få til en kjedereaksjon som i en atombombe i et kjernekraftverk, for det er heeelt forskjellige anrikningsgrader i et våpen kontra et kraftverk 🙂
Da jeg var og holdt foredrag for NABLA i Trondheim forrige uke fikk jeg veldig positiv respons på dette faktumet etter foredraget; og godt var det, for det var en av "mytene" jeg har vurdert å kutte ut fra "myter og misforståelser"-foredragene mine - men nå blir det altså 🙂

Så: Atomvåpen er ikke lik atomkraft - og faktisk så fins det land som har sivil kjernekraft uten å ha atomvåpen, og det har fins land som har hatt atomvåpen uten først å ha hatt sivil kjernekraft...

Ellers har det vært ukens andre thorium/forskningsdag i dag - og den var ikke superoppløftende (krysser fingrene for at det blir bedre neste uke); for det første blir jeg alltid veldig distrahert av å ha møter som deler opp dagen, og i dag var det jo SUFU-møte - og der var det MYE vi skulle igjennom (har blant annet lært at enhver muntlig eksamen faktisk er offentlig, så hvem som helst kan gå og høre på en som har en muntlig eksamen). For det andre var det bare det at jeg hadde kommet veldig ut av hvor jeg egentlig var hen i analysen, og hvordan jeg skulle gjøre forskjellige ting - noe jeg nå vet til neste gang, så det lover jo godt.
Dro hjem ikke altfor sent i dag, fikk handlet bursdagsgave til Alexandra (det er ca en meter langt og kan brukes om vinteren - gjett hva 🙂 ), drakk kaffe på min lokale Café Ro, der jeg pleier å ha morgenkaffen min, sammen med søte søte Gry, og dro og trente. Hadde et mål på 3D-møllen i dag - som jeg klarte; og, hjelp så svett og sliten jeg ble...jeg er jo i fantastisk dårlig form, så jeg tør ikke dele med dere hva målet mitt var; det viktige er at jeg gjennomførte det, og belønningen for dette er et par nye. freshe joggesko 😀

God tirsdag fineste!

Nå har jeg nettopp vært en tur nede i Ingeniørenes hus i sentrum , og holdt foredrag for Tekna Seniorteknologene om kjernekraft og thorium - superhyggelig og alltid gøy med sånne "oppdrag". Nå er det en kombinasjon av TEDx-forberedelser (ny runde med coaching i kveld, så lurt å være best mulig forberedt - også sliter jeg litt med å finne ut hva egentlig hovedpoenget med fordraget mitt skal være - selv om jeg har en god idé, da), og detektorkalibrering (ja, ting tar tid; i alle fall når man ønsker å forstå absolutt alt som skjer i prosessen til enhver tid - da må man prøve seg frem med små steg av gangen, for så sjekke hva som skjer når jeg forandrer på den parameteren kontra denne, osv - science <3 ), og etter coachingen i ettermiddag/kveld er det vel rett og slett bare å sette nesen hjem for sengen 😛
Men! Det er FRYKTELIG lenge siden jeg har hatt 10 fakta, og det er jo innmari dumt, for det er jo så mange temaer å ta av...så her kommer 10 fakta om radon - håper dere liker det 🙂

  1. Radon har forkortelsen Rn - og ikke Ra, som er radium 😉
  2. Radon er en edelgass, og den reagerer derfor ikke så lett med andre stoffer, siden den har fylt opp alle elektronskallene sine 😛
  3. Både uran og thorium er opphav til radon
  4. Halveringstiden til radon er såpass kort at den kontinuerlig må produseres fra en radioaktiv "mor" med superlang halveringstid (som både thorium og uran) - så det blir en kontinuerlig tilførsel (ellers ville vi ikke hatt noe radon-gass)
  5. Når radon kommer fra thorium kan man også kalle det for thoron - men det er fremdeles radon, altså, og bare et supersøtt kjælenavn for å liksom vise hvem som er mammaen *smelt*
  6. Siden det altså er en gass kan man puste den inn, og det kan være litt dumt siden den sender ut alfastråling, og hvis man puster den inn kommer den jo ned i lungene dine, og da får man en kilde til alfapartikler inn i lungene, og alfapartikler vil jo sette igjen all energien sin i lungeveggene, liksom, for den kommer seg jo ikke ut :/ Så da kan man tilsutt får kreft, da, hvis man puster inn veldig veldig masse 
  7. Hvis man røyker så er (den negative) effekten av radon større enn vis man ikke røyker. Og begge deler er jo dårlig for lungene, men summen av røyk + radon er faktisk større enn det den liksom skulle ha blitt (1+1=3, liksom)
  8. I Norge er det mer radon enn mange andre steder i verden, og det er med på å gjøre at bakgrunnstrålingen i Norge er litt høyere enn verdenssnittet - og det er med på å gjøre det at det faktisk hele tiden var (og er) høyere strålenivåer i feks Oslo enn det var i Tokyo på det "verste" under Fukushima-ulykken 
  9. Når radon sender ut alfapartikkelen sin blir den til polonium, Po - og dette er det samme stoffet som tok livet av Litvinenko (det burde jeg kanskje lage et eget innlegg om ?). Det som blant annet er litt kjipt med polonium er at dette ikke er en gass, men fast form, så da blir jo dette radioaktive stoffet sittende fast i lungene :/
  10. Man må ikke gå rundt å være veldig redd for radon xD

Har jeg forresten sagt at jeg elsker <3 sosiale medier? Syns sånn som dette bare er så utrolig hyggelig!

God mandag fineste:)

Denne uken blir det ingen oppskrift, men noen ekstra fakta om r-prosessen som jeg ga "oppskrift" på forrige uke. Det var nemlig søteste Ann-Cecilie, som er post doc/forsker på kjernefysikkgruppen vår, og superflink, og med en ekstra interesse for astrofysikk (på godt norsk: nuclear astrophysics 😛 ), som kommenterte da jeg delte r-prosessoppskriften på facebook forrige uke:

"Det festlige med thorium og uran og slikt er at de _må_ ha vært laget i "rapid neutron-capture process" ettersom s-prosessen stopper ved vismut  

Litt kjipt at vi vet så lite om r-prosessen når den er "ansvarlig" for ca. halvparten av grunnstoffene tyngre enn jern... "

Fascinerende, ikke sant?! Også er jo feks dette et godt eksempel på at vi vet at det er mye vi ikke vet - og det er jo derfor vi fortsetter...;)
Senere vil jeg dele "oppskrift" både på s- og p-prosessenene, som er de andre måtene grunnstoffer blir dannet på, der ute i det store verdensrommet <3
Her er noen flere bilder fra sommerfesten (har vært en rolig helg, så bilder fra den egner seg best på instagrert-innlegg i morgen 😉 )

Nå skal jeg løpe avgårde for å møte Jo Og Olav - vi skal snakke om boken, og planlegge <3
Snakkes senere!


God ny uke alle skjønneste leserne mine <3<3<3

Med jevne mellomrom får jeg spørsmål om Sellafield og hva jeg tenker og mener om dette anelegget. Jeg pleier å svare at jeg ikke har satt meg såååå uttrolig godt inn i saken, og helst ikke vil si så mye mer om dét...men i dag vil jeg gjerne dele en liten historie - Fun Fact, om du vil - om Sellafield og technetium-utslipp derfra 😉

Sellafield har jo blitt veldig kritisert for å slippe ut technetium-99, og det er jo ikke bra at de gjør det, men hvor ille er det sånn egentlig? For de radioaktive partiklene har jo fulgt strømmen fra Storbritannia og opp til kysten vår, også har vi kunnet måle radioaktiviteten i feks norsk hummer...
På det aller meste har det vært målt 42 becquerel (Bq) av Technetium-99 i kjøttet til hummeren vår :/ Hvis man regner om dette til stråledose så tilsvarer dette at en voksen person (som veier 70 kg) får en dose på 27 nano-sievert ved å spise én kg hummer.
Men er det mye eller lite, liksom?

Det er lite...!

En gjennomsnittsnordmann får hvert år en stråledose (ioniserende stråling/radioaktivitet) på ca 4 milli-sievert. Det betyr at hvis man skulle få en stråledose fra technetium-99 i hummer tilsvarende denne "bakgrunnsdosen" i ett år, så måtte personen ha spist 150 tonn hummer....!

Altså, utslippene burde jo selvsagt egentlig være på null - La Hague i Frankrike har visst ikke utslipp av technetium-99, så det burde være fullt mulig for Sellafield óg...men vi må jo allikevel ikke miste hode og bli hysteriske uten å se på hva disse utslippene faktisk betyr, da, liksom 😉