Denne artikkelen skrev Anders og jeg rett før jul i 2014. Vi var ikke blitt sammen ennå, men hele høsten hadde det vært VELDIG mye frem og tilbake (huff, jeg ser ikke tilbake på akkurat den høsten med et stort smil...:P), men sånn rett før jul så begynte vi å henge sammen igjen, og denne (tøyse)artikkelen om hvordan Julenissen kommer seg rundt på julaften var for oss en stor flørt 😀

Jeg må si jeg fremdeles er fornøyd med resultatet av flørten vår (både artikkelen, og det faktum at vi gifter oss om nøyaktig 2 måneder ♥), så jeg syns det passer godt å dele her nå i kveld. Enjoy!


Sammendrag

Vi har studert julenissens 31 travleste timer i året ved hjelp av tall fra verdens beste kilde: Google. Ved å anta at julenissen kun besøker kristne barn og at alle hjem er som en perfekt norsk familie kommer vi frem til at julenissen ikke må kjøre raskere enn lyset og at de relativistiske effektene kun endrer tiden med noen få minutter. Selv om dette ikke bryter fysikkens lover må julenissen ha en enorm hastighet. Med luftmotstanden dette medfører ser vi at reinsdyrene opplever enorme temperaturer liknende det som skjer i supernovaer og kan konkluderer med at Rudolf ikke er laget av vanlig karbon. Med dette anbefaler vi LHC og CERN om å lete etter nye elementærpartikler.

1 Introduksjon

Hvert år har julenissen og hans reinsdyr en enorm jobb med pipeklatring, levering av gaver og grøtspising. Av jordens 7 milliarder mennesker trenger han heldigvis ikke å besøke alle. Omtrent 29% av jordens befolkning tilhører kristendommen[1], og vi har antatt at han kun besøker disse hjemmene. Med totalt 1,9 milliarder barn under 15 år[2] og antagelsen om at alle hjem er en perfekt norsk familie med 2,1 barn per husholdning må julenissen besøke \(N_\text{hjem}\) = 262 millioner hjem.

2 Hastighet

Vi vet alle at julenissen arbeider mens folk sover om natten. Dette setter begrensninger på tiden han har til råde på julaften. Hvis vi antar at natten varer fra 2300 til 0600, og at vi har 24 tidssoner, vil dette gi ham T = 31 timer. Dette gir antall hus han må besøke per sekund

\(f_\text{hus} = \frac{272 \text{ millioner hus}}{31\text{ timer}} = 2437 \text{ hus/sek}. (1)\)

 

Det neste spørsmålet er nå hvor fort han må kjøre for å rekke dette. Hvis vi nå antar at disse husene ligger jevnt fordelt over jordens 149 millioner kvadratkilometer[3] vil hver tomt ha areal

\(A_\text{tomter} = \frac{149\text{ millioner km}^2}{262\text{ millioner hus}} = 0.57\text{ km}^2 . (2)\)

 

Siden mange tomter er kvadratiske antar vi at alle er det, og dette kvadratet vil da ha sidelengde

\(L = \sqrt{A_\text{tomter}} = 755\text{ m}. (3)\)

 

Husene ligger altså 755 meter fra hverandre. Julenissen må reise omtrent 2500 slike strekninger hvert sekund. Dette gir en minimum hastighet på

\(v_\text{min} = \frac{2437 · 755\text{ m}}{1\text{ s}} = 1839 \text{ km/s}. (4)\)

 

Lyshastigheten er omtrent 300.000 km/s, så minimum hastighet er nesten 1% av lyshastigheten. Men det ville vært en litt vel drøy forenkling, selv for fysikere (jada, sfæriske kuer er ikke uvanlig 1 ). Julenissen skal jo stoppe innom hvert av disse husene. Han skal opp på taket, ned pipa (hvis det ikke er noen pipe må han finne en annen inngang), legge gavene under juletreet, putte godterier i julestrømpene, spise grøt og komme seg ut igjen. Det virker rimelig at 90% av tiden brukes på dette. Da har han bare 10% av tiden til å reise. Dette gir en ny minste hastighet

\(\tilde v_\text{min} = 18390\text{ km/s}, (5)\)

 

i underkant av 10% av lyshastigheten. Siden noe av denne tiden brukes til å bremse og akselerere kan vi regne med at dette er et godt estimat. Man kan jo nå lure på om vi vil se relativistiske effekter (Einsteins oppdagelse, at tiden går saktere siden for julenissen når han kjører fort). Ved å se bort i fra effektene fra bremsing/akselerasjon (her ville Sheldon og Einstein sett stygt på oss) kan vi bruke uttrykket for tidsdilatasjon[4]

\(t_0 = \frac{t}{1 − \big(\frac{v}{c}\big)^2}(6)\)

 

der t er tiden det har gått for julenissen,\(t_0\) er tiden det har gått for alle andre på jorden, v er hastigheten til julenissen og c er lyshastigheten. Ved å sette inn tallene over får vi

\(t_0 = \frac{31\text{ timer}}{1 − \big(\frac{18390\text{ km/s}}{300000\text{ km/s}}\big)^2} = 31,06\text{ timer}. (7)\)

 

Dette betyr at når julenissen opplever 31 timer har det ikke gått mer enn 31 timer og 3,5 minutter for alle andre på jorden. Han taper altså ikke mer enn 3,5 minutter. Vi regner med at han er kjent med Einsteins relativitetsteori og gjør de nødvendige endringer for å ta hensyn til dette. Hadde vi tatt med effekten av bremsing/akselerering kan det hende julenissen og reinsdyrene hadde blitt til et sort hull, men det får vi ta en annen gang.

1 - Se mer her: http://en.wikipedia.org/wiki/Spherical_cow

 

3 Masse og vekt

Vi vet nå at julenissen må reise svært fort for å rekke gjøremålene på julaften, men vi har enda ikke diskutert hvordan det går med vekten hans. Det er vanlig å sette igjen noe snacks til julenissen slik at han får noe tilbake for alt arbeidet han gjør. Som vi nevnte innledningsvis antar vi at alle 262 millioner hjem er perfekte norske hjem. Vi kan da regne med at nissen får grøt - etter god, norsk tradisjon. Vi tenker at en typisk porsjon er på ca 200 gram, noe som vil gi en økning i julenissens vekt på (han har ikke tid til dopauser)

\(\Delta m = 262\text{ millioner} \cdot 0,2\text{ kg} = 52400\text{ tonn}. (8)\)

 

Men husk nå at julenissen legger igjen gaver til alle snille barn. Siden alle hjem antas å være norske familier vil hvert snille barn få en iPhone 6 2 . Det er omtrent 1 snilt barn i hver familie[5], og en iPhone 6 med innpakning veier omtrent 200 gram. Dette betyr at totalvekten på sleden er konstant lik 52400 tonn! Julenissen spiser 200 gram grøt og legger igjen en iPhone 6.

2 - Apple har produsert mer enn 500 millioner iPhones siden begynnelsen, så det er en helt rimelig antagelse.

 

4 Reinsdyr og luftmotstand

Vi må huske på at det er reinsdyrene som gjør all jobben her. Så langt har vi ikke observert flyvende reinsdyr, men det har blitt hevdet at det er 7,5 millioner ukjente dyrearter[6], så det er ikke helt umulig at de er uoppdaget til nå. Vanlige reinsdyr kan kanskje trekke 150 kg, men Rudolf og vennene er tross alt superreinsdyr (de kan jo fly), så vi regner med at de kan trekke 1 tonn (det er jo lettere å dra ting gjennom luften enn langs bakken). Vi trenger altså 52000 reinsdyr 3 . Videre antar vi at luftmotstanden kan skrives som[7]

\(F_D = \frac{1}{2} \rho v^2C_DA, (9)\)

 

der ρ er massetettheten til luften, v er hastigheten til reinsdyrene, \(C_D\) er luftmotstandskoeffisienten og A er tverrsnittet (arealet reinsdyrene dekker, sett forfra). Vi regner med at reinsdyrene flyr optimalt med tanke på luftmotstand og flyr strømlinjeformet 4 , noe som gir \(C_D\) = 0,04. Bruker vi massetetthet for luft ρ = 1,2754 kg/m3 [8] og hastigheten vi fant i likning (5) får vi en luftmotstand på

\(F_D = \frac{1}{2}(1,2754 \text{ kg/m^3} )(18390\text{ km/s})^2 · 0,04 · 52 = 0,5 · 10^{15}N = 0,5\text{ petanewton}, (10)\)

 

der vi for enkelhets skyld har antatt at tverrsnittet er \(52 \text{m }^2\) . For å forstå hvor stor kraft dette er (luftmotstanden er en kraft) kan vi tenke at dersom hver person på jorden veide 100 kg og kjørte i 2500 km/t, så ville kraften bremset kjøretøyet (bil, båt, fly, rakett) på 1 sekund. Det er mye. Reinsdyrene må med andre ord stå på skikkelig for å holde farten oppe.

3 - Vi tror ikke på den vanlige historien om at julenissen har 8 reinsdyr.

4 - Se figur her: http://en.wikipedia.org/wiki/Drag_coefficient

5 Energi og temperatur

Vi vil nå se på hvor mye energi reinsdyrene må konvertere (de må konvertere energi fra mat til å dytte vekk luft). En konstant kraft F som virker over en avstand s krever energi E 5

\(E = F\cdot s. (11)\)

 

I løpet av 1 sekund med bevegelse har sleden flyttet på seg en avstand

\(s = v\cdot t = 18390\text{ km/s}\cdot 1\text{ s} = 18390\text{ km}. (12)\)

 

Putter vi det i likningen over får vi hvor mye energi reinsdyrene bruker hvert sekund

\(E = 0,5 \cdot 10^{15}\text{ N} \cdot 18390\text{ km} = 0,92 \cdot 10^{22}\text{ J}, (13)\)

 

omtrent like mye menneskene på jorden bruker i løpet av 17 år (med dagens forbruk)[9].

5 - Energi er lik kraft ganget med vei.

6 Temperatur

Energien vi fant brukes til å dytte vekk luft. Denne energien kommer til å øke temperaturen til luften. Vi antar at luften er en idéell gass og kan bruke ekvipartisjonsprinsippet 6

\(E = \frac{3}{2}N k_B T (14)\)

 

der E er energien, N er antall atomer,\(k_B\) er Boltzmanns konstant og T er temperaturen. All energien vil fordeles mellom atomene reinsdyrene har dyttet vekk. Antall atomer som får denne energien er atomene reinsdyrene har dyttet vekk, altså de i det volumet reinsdyrene flyr gjennom. Vi husker antagelsen om at tverrsnittet reinsdyrene har var\(A = 52 \text{ m}^2\) og strekningen de flyr i løpet av 1 sekund er\(s = 18390\text{ km}\), så vil de hvert sekund dytte vekk et volum V = A · s = 956 millioner kubikkmeter luft. (15) Luft har omtrent \(10^{25}\) atomer per kubikkmeter[10], så vi kan da finne antall atomer N som har blitt dyttet vekk

\(N = 10^{25} \text{ atomer per kubikkmeter}\cdot 956 · 10^6 \text{ kubikkmeter} (16)\)

 

\( = 9,6 \cdot 10^{33}\) atomer. (17)

 

Løser vi likning (14) for temperaturen får vi

\(T = \frac{2E}{3N k_B} = 4,6 · 10^{10}K, (18)\)

 

altså 46 milliarder °C. Til sammenlikning har solen en kjernetemperatur 15,7 millioner °C[11], altså blir det 3000 ganger varmere enn i solens kjerne. Når stjerner dør vil vi kunne se temperaturer på 100 milliarder °C[12], så temperaturen rundt Rudolf er sammenliknbar med det vi ser i en supernova - de største eksplosjonene universet har å tilby. Karbon begynner å fusjonere ved temperaturer rundt 500 millioner °C[13], så det vil være høyst problematisk for Rudolf og julenissen dersom de er laget av karbon.

6 - Les mer her: http://en.wikipedia.org/wiki/Equipartition_theorem

7 Konklusjon og diskusjon

Vi har sett på minste hastighet Rudolf og gjengen må fly i for å klare å levere gaver til alle verdens kristne barn. Det viser seg at de relativistiske effektene nesten er neglisjerbare og at det ikke er noen fundamentale fysiske lover julenissen må bryte for å gjøre jobben sin. På grunn av luftmotstand må reinsdyrene stå på heftig for å opprettholde hastigheten og de vil bruke enorme mengder energi for å klare dette. Energien blir overført til luften rundt og reinsdyrene vil oppleve en temperatur på 46 milliarder °C, omtrent 3000 ganger varmere enn i solens kjerne. Ved slike temperaturer vil kjernefysiske reaksjoner skje og vi konkluderer med at Rudolf ikke er laget av karbon eller andre kjente grunnstoffer. Det kan derfor tyde på at det finnes helt andre partikler enn de vi kjenner idag og vi anbefaler CERN og LHC, den store partikkelakseleratoren i Genève, å se etter disse.

Referanser

[1] PewResearch. Global Christianity – A Report on the Size and Distribution of the World’s Christian Population. 2011. url: http://www.pewforum.org/2011/12/19/global-christianity-exec/ (sjekket 23.12.2014).

[2] Grapminder. The World has reached Peak Number of Children! 2011. url: http://www.gapminder.org/news/world-peak-number-of-children-is-now (sjekket 23.12.2014).

[3] Jerry Coffey. Surface Area of the Earth. 2009. url: https://www.universetoday.com/25756/surface-area-of-the-earth/ (sjekket 23.12.2014).

[4] Wikipedia. Time dilation. 2014. url:  http://en.wikipedia.org/wiki/Time_dilation (sjekket 23.12.2014).

[5] Anders Hafreager. Snille barn. 2014. url: http://folk.uio.no/anderhaf/snillebarn.html (sjekket 23.12.2014).

[6] National Geographic. 86 Percent of Earth’s Species Still Unknown? 2011. url: https://news.nationalgeographic.com/news/2011/08/110824-earths-species-8-7-million-biology-planet-animals-science/ (sjekket 23.12.2014).

[7] Wikipedia. Drag equation. 2014. url: http://en.wikipedia.org/wiki/Drag_equation (sjekket 23.12.2014).

[8] Wikipedia. Density of air. 2014. url: http://en.wikipedia.org/wiki/Density_of_air (sjekket 23.12.2014).

[9] Wolfram Alpha. World energy consumption. 2010. url: http://www.wolframalpha.com/input/?i=world+energy+consumption (sjekket 23.12.2014).

[10] Wikipedia. Number density. 2014. url: http://en.wikipedia.org/wiki/Number_density (sjekket 23.12.2014).

[11] Wikipedia. Solar core. 2014. url: http://en.wikipedia.org/wiki/Solar_core (sjekket 23.12.2014).

[12] Wikipedia. Supernova. 2014. url: http://en.wikipedia.org/wiki/Supernova (sjekket 23.12.2014).

[13] Wikipedia. Carbon-burning process. 2014. url: http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/carbcyc.html (sjekket 23.12.2014).

 


Den 9. januar 2015, da bildet under her ble tatt, feiret jeg 31-årsdagen min. Anders var selvsagt invitert. Denne kvelden dro han bare aldri hjem, og vi innså at vi bare hadde blitt sammen ♥

2

I dag har jeg sittet og lest masse om Marie Curie og det arbeidet og den forskningen hun gjorde; og hun var jo HELT amazing! Så da begynner jeg å tenke, da, sånn, man sier jo "å være (helt) Einstein", eller liknende om det å være smart, men man burde jo virkelig (også) bruke navnet Curie.

Her er noen av de tingene Marie Curie gjorde:

Fordi hun var kvinne fikk hun ikke gå på noe ordentlig universitet i Polen (der hun var fra), men hun klarte til slutt å skrape sammen nok penger til å dra til Paris, der hun studerte om dagen, og underviste om kvelden. Hun klarte å komme seg til en doktorgrad - Studier av radioaktive stoffer - og fortsette denne forskningen sammen med Pierre Curie (mannen hennes). I 1903 (hun var 36 år gammel) fikk hun Nobelprisen i fysikk, sammen med Pierre Curie og Henri Bequerel, for oppdagelsen av radioaktivitet.

I 1911 fikk Marie Curie Nobelprisen igjen, alene, i kjemi. Dermed ble hun den eneste som noensinne har fått Nobelprisen i to forskjellige naturvitenskapelige felt. Hun fikk prisen i 1911 for oppdagelsen (les: separeringen) av radium. Hun oppdaget også polonium, men det var enklere enn radium.

Det er en grunn til at Radiumhiospitalet heter nettopp radiumhospitalet; nemlig at radium ble brukt til den første stråleterapien - altså behandling av kreft. Marie Curie fant oppdaget ikke bare at radium fins, hun klarte ikke "bare" så separere dette stoffet i ren form, hun fant også ut at kreftceller ble mer ødelagt enn friske celler, når man utsatte dem for stråling fra radium. For første gang var det faktisk mulig å gjøre noe hvis man fikk kreft...

Under 1. verdenskrig laget hun mobile røntgenmaskiner som hun kjørte rundt med i felten, fordi hun skjønte at skadede soldater klarte seg best hvis de ble operert så fort som mulig.

Hun fikk også Davy-medaljen, Matteucci-medaljen, Elliott Cresson-medaljen, Albert- medaljen, og Williard Gibbs-prisen.

I tillegg til disse tingene var hun "første kvinne til" ganske mange forskjellige ting. Det er jo lett å tenke at ja, men hvis det var andre (menn) som hadde gjort det før, så er det ikke noe spesielt med at hun også gjør det, bare fordi hun var kvinne, men hvis man tar med i likningen nettopp de fordommene hun møtte som kvinne (fikk ikke studere, for å nevne bare én) så kan man jo tenke seg hvor utrolig smart hun må ha vært, og hvor sinnsykt mye arbied som må ha ligget bak alt hun fikk til. Marie og Pierre Curie fikk også to døtre sammen; en av dem (Iréne) fikk også Nobelprisen i fysikk - for oppdagelsen av kunstig radioaktivitet, og totalt fikk Curie-familien 5 Nobelpriser...!

Ville vi ha brukt navnet Curie i tillegg til (eller i stedetfor?) Einstein, hvis hun hadde vært mann, kan man jo spørre seg...


Jeg har sittet og jobbet på Litteraturhuset i dag, forresten 🙂

Jeg "gjenoppdaget" det fine stedet forrige uke, da jeg ble invitert til et møte der. Det ligger på en måte litt klønete til for meg, men på dager som i dag, der jeg skal finne meg et sted der jeg skal bli sittende i mange timer er Litteraturhuset helt perfekt! Det kommer til å bli mange flere skriveøkter på Litteraturhuset fremover ♥

4

Det virker jo nesten ikke sånn nå om dagen, når vi nærmer oss den aller mørkeste tiden på året, som glir over i den kaldeste, at solen faktisk er der og gjør like mye ut av seg som alltid. Men det gjør den jo; den fusjonerer hydrogen til helium og stråler både varme og andre ting - trofast, hele tiden (heldigvis) 🙂

Her om dagen fikk jeg et spørsmål om solstormer og solvind, og jeg syns det passer fint å si noe om solstormer nå i dag.

Aller først, short and sweet - en solstorm er et stort utbrudd av stråling/plasma fra ytterkanten av solen ♥

Så, litt mer detaljert: Saken er den at all energien som blir frigjort når hydrogen smelter sammen med hydrogen og lager helium - altså det som gjør at solen faktisk lyser og varmer - presser solen utover. Altså, solen er jo tross alt en enorm, kontinuerlig eksploderende atombombe, og atombomber holder seg jo ikke sammen i en klump 😉 Grunnen til at solen allikevel ikke går i oppløsning er at alle partiklene (hydrogen, hovedsakelig) har en masse (vekt), og siden det er veldig mye hydrogen veier hele solen også veldig mye - dette gjør at solen får en veldig stor tyngdekraft som trekker alt sammen. Heldigvis er tyngdekraften større enn den kraften som presser alt fra hverandre , så dermed blir det en sol/stjerne, og ikke bare en eksplosjon der alt blir slynget fra hverandre, og så var det slutt...

Kort sagt: Tyngdekraften trekker sammen, "fusjonskraften" presser ut. Tyngdekraften er større enn fusjonskraften (enn så lenge...:/)

Innimellom skjer det et slags "vulkanutbrudd" fra ytterkanten av solen, av plasma som kommer fra innsiden av solen. Plasmaen, som består av ladde partikler som protoner og elektroner, samt røntgenstråling og gammastråling med veldig høy energi, blir slynget ut fra solens overflate, og beveger seg kanskje mange millioner kilometer før tyngdekraften til solen fanger plasmaen inn igjen. Så det er litt som hvis du tar en ball (eller noe annet; mobiltelefonen som du er sur på fordi den er for treg, eller noe 😛 ) og kaster den skrått bortover (oppover og bortover), så hardt du kan, så kommer ballen først til å gå oppover før tyngdekraften fanger ballen og tar den ned til bakken igjen 🙂

Energien fra en eneste sånn storm (vulkanutbrudd/ekspolosjon) kan være mer enn en million atombomber som går av på én gang...! Disse stormene (solar flares) ser man ved at noen flekker på solen plutselig er mye lysere enn de pleier, og de kan vare fra noen minutter til timer.

Solfysikk er ikke det jeg kan aller mest om, så hvis det er et viktig poeng jeg har gått glipp av blir jeg kjempeglad hvis du vil dele i kommentarfeltet 🙂

Det som dog ER mitt fagfelt er selvsagt fusjonen som skjer i solen: Noen som vet hvorfor jeg sier at "Tyngdekraften er større enn fusjonskraften enn så lenge" ? Pi poeng til riktig svar ♥

 

I dag lærte jeg enda en grunn til at det er enkelt for meg å føle meg veldig hjemme i Trondheim og på NTNU: (Det gamle) fysikkbygget ligger i Sem Sælandsvei, akkurat som fysikkbygget på Blindern gjør også. Riktignok er det fysikkbygget jeg har gått mest i i SemSælandsvei nr 35 (tror jeg?), mens det på NTNU er nummer 5 - men dét skal jeg faktisk klare å leve godt med 😉 Hjemmekoselig, kaller jeg dette ♥

Grunnen til at jeg har tilbrakt dagen i 3. etasje i Sem Sælandsvei nummer 5, på Gløshaugen, var at jeg har vært der oppe med Silvija og Kristine, og spilt LØRN.TECH - NTNU-edition. Kjempespennende å høre om all den kule forskningen som skjer i Trønderhovedsatden, og jeg tror vi fikk laget noen skikkelig gode LØRN-episoder i dag!

Lang dag, da; dro hjemmefra klokken 6, og nå når jeg sitter og skriver dette er klokken 21:30, og det har gått i ett hele dagen. Mailboksen er ikke tømt, men nå skal jeg faktisk prioritere søvn, så får jeg heller starte morgendagen med mail... Noen starter dagen med yoga, andre starter med mail 😛

Den siste fredagen i november er (som kjent?) Black Hole Friday. Jeg har markert dagen med sorte negler. Har liksom ikke "turt" å gå all inn på sort før, men når det først er Black Hole Friday, OG neglene skal fikses, så er det liksom ingen annen utvei, syns jeg 😉 Det var NASA som fant ut i 2014 at de ville omdøpe (det mer kjente konseptet) Black Friday, til Black Hole Friday; dagen da man deler fakta om sorte hull:

1. Sorte hull er ikke hull. De er restene etter en stor stjerne som til slutt har kollapset så voldsomt at all massen er så tett, at tyngdekraften blir så stor, at til og med lys blir trukket inn, og ikke kommer vekk igjen. (Lyset "faller" ned på et sort hull, akkurat som pennen min faller ned på bakken når jeg slipper den.)

 

2. Sorte hull er usynlige. Vi kan ikke se sorte hull, siden ikke noe lys som treffer et sort hull kan komme seg ut igjen (vi ser jo ting fordi lyset terffer dem, og så videre treffer øynene våre). Vi kan allikevel "se" at et sort hull er der, ved å studere stjerner og gasser i nærheten, og se hvordan de oppfører seg annerledes enn andre stjerner. Den enorme tyngdekraften påvirker nemlig stjerner og gasser i nærheten.

3. Sorte hull kan være både store og små. Forskere tror at de aller minste sorte hullene er på størrelse med et atom, men med en vekt som et stort fjell... Mens noen av de største sorte hullene vi vet om er flere ganger større enn solsystemet vårt, med en vekt som flere tusen milliarder soler.

4. Hovedregelen for sorte hull: Fordi de har så enorm tetthet så må bevege deg raskere enn lyste for å slippe unna. Og siden ingenting kan bevege seg raskere enn lyset, vel...

 

5. De aller fleste galakser (alle?) har et sort hull i midten, som holder galaksen på plass, på en måte 🙂

OLYMPUS DIGITAL CAMERA

1

Hei fine lesere ♥ Nyter dere lørdagskvelden? Alexandra og jeg kom akkurat hjem, etter å ha vært en liten svipptur hos familien til Anders i Hamar. Anders ble igjen der, så vi har, med Alexandras egne ord "Jentekveld med bare én , liten gutt" (Panter, altså). Vi skal krype opp i dobbeltsengen, pakke dynen godt rundt oss, og se en film, før hun skal få sove sammen med meg - det er ofte sånn vi gjør det når Anders er borte 🙂

Apropos Anders: Det ble ingen "Sunniva Svarer" på onsdag denne uken, men det prøvde jeg å bøte på ved å ta med meg Anders på live-sending på torsdagen istedetfor. Jeg syns egentlig det fungerte ganske bra, eller hva? Vi snakket om jod-tabletter (spoiler: nei, jeg kommer IKKE til å kjøpe for å ha på lager hjemme), formidlingens kår i akademia og ansettelser (er man en "smart" ung forsker så dropper du absolutt å bruke tid på formidling til "allmennheten"), big data og hva Anders gjør i Cognite, og tanker rundt jorden som snurrer. I tillegg kom det spørsmål om forskjell på gutter og jenter, som vi prøvde å svare på så godt vi kunne - vi tegnet til og med gauss-kurver på direkten 🙂

 

Jeg kommer nok til å ta han med meg igjen sånn med jevne mellomrom (med mindre det skulle komme mange, høylytte protester 😉 ), men jeg kommer også til å fortsette å kalle spalten "Sunniva Svarer", også helt alene. Uken som kommer blir også torsdag sendingsdag, og ikke onsdag, siden det er Halloween. Da (torsdag, altså) kommer jeg til å ta med meg lillesøster Carina; hun er biolog, og vi skal snakke om Bjørnedyret (som tåler "alt", også stråling), og om det fins såkalte radiotrofe sopper - altså sopp som lever av gammastråling...:D

Bjørnedyret har vært et ønsket tema fra en av dere som pleier å se på "Sunniva Svarer", og da syns jeg jo det er mest gøy å kunne ta med en som kan mer om temaet enn det jeg kan. Jeg har også fått flere, forskjellige spørmsål og kommentarer som handler om den snurrende jordkloden, som jeg har skrevet om tre ganger denne uken (1 her, 2 her, og 3 her) - det er jo veldig gøy - og det blir nok i alle fall ett inlegg til om det, men også godt utgangspunkt for mer prat med Anders og meg. Og, ja, dere sender meg spørsmål og kommentarer, og det er kjempegøy, så fortsett med dét!

Jeg er ikke helt ferdig med den snurrende jordkloden vår, og hva som skal til før vi snurrer sånn at vi ikke holdes på plass av tyngdekraften lenger, merker jeg...  Her kan du lese det første innlegget, om hvorfor vi ikke faller av jordkloden, og her kan du lese det andre innlegget, om hvor fort vi må snurre for å faktisk falle av.

En annen «løsning», som også gjør at vi faller av jordkloden (fin løsning, i grunn :P) er at døgnet fremdeles er 24 timer (eller 86400 sekunder), men at jordkloden bare var mye større. Hvis jordkloden blir stor nok så blir den farten man har ved ekvator så stor at man faller av. Da antar jeg at tyngdeakselerasjonen/tyngdekraften ikke har forandret seg, da – så derfor blir tettheten på jordkloden er en litt annen enn det den er nå 😉

Igjen så er det de siste dagenes heteste likning, nemlig den som sier:

\(a = \frac{v^2}{r}\), som gjelder.

\(a\) skal fremdeles være 9.81 \(m/s^2\), motsatt vei av tyngdekraften, slik at den blir opphevet, og \(r\), som er radius, er den ukjente –\(r\) forteller jo hvor stor kulen/kloden er. Problemet er at vi vet ikke hva farten er heller, da; vi vet bare at vi skal bruke 24 timer på å komme oss akkurat én runde rundt, og så lurer vi på hvor stor radiusen må være før kulen blir så stor at a blir 9.81 \(m/s^2\), og den farten (v) man har er jo avhengig av radiusen...

Men! Fart er enkelt og greit sånn:

\(v = \frac{s}{t}\)

Strekning delt på tid. Tiden er ett døgn, altså 24 timer, altså 86400 sekunder. Strekning er omkretsen av jorden, altså omkretsen av en sirkel: strekning = Omkrets =\(2\cdot \pi\cdot r\), så da kan vi sette inn omkretsen for s i fartslikningen, og da blir farten som dette \(v = \frac{2\cdot \pi\cdot r}{86400}\)m/s. Her er det bare r som er ukjent, og da har vi plutselig en likning det går an å løse 😀

\(a = \frac{v^2}{r} = \frac{\big(\frac{2\cdot \pi\cdot r}{86400}\big)^2}{r} = \frac{4\pi^2\cdot r}{86400^2}\), og da blir r:

\(r = \frac{a \cdot 86400^2}{4\pi^2} = 1 854 969 424.91 m\)

Hvis jordkloden har en radius større enn 1 854 970 km, og den bruker 24 timer på å snurre en runde rundt, så kommer vi til å falle av. Den jordkloden vi faktisk lever på har en radius som er 6371 km. Skal vi falle av med en rundetid på ett døgn, må den altså ha omtrent 300 ganger større radius. Til sammenlikning har Jupiter en radius på 69 911 km, altså omtrent 11 ganger større. Solen har en radius som er 100 ganger så stor som jordens radius, så jorden måtte hatt 3 ganger større radius enn solen for at dette skulle skje! Dette var jo veldig mye.

MEN! I denne utregningen har jeg antatt at tyngdeaksellerasjonen er 9.81 \(m/s^2\), men det er egentlig bare riktig med akkurat den radiusen jorden vår har. Hvis man tar hensyn til dette (som er viktig, for det påvirker svaret mye), så får man at jorden måtte hatt omtrent 7 ganger større radius enn den har. Dette kan jeg vise i et annet blogginnlegg 🙂


Anders og jeg snakker forresten om snurrende jordkloder - eller kanskje enda mer om ikke-snurrende jordkloder HER i dag 🙂 Jeg syns det var veldig hyggelig å ha han med på "Sunniva Svarer", så det tror jeg helt klart jeg kommer til å gjøre igjen! Det var også han som gjorde meg klar over at denne tyngdeakselerasjonen på 9.81 fornadrer seg når radiusen på jordkloden forandrer seg - det hadde jo ikke jeg tenkt på...:)

2

Her kommer en liten del 2 av gårsdagens innlegg om hvorfor vi ikke faller av jordkloden; for det man kan spørre seg om videre er jo nemlig hvor fort måtte vi snurre for at vi faktisk skulle falle av jorden?

Og dét kan vi jo regne på ♥ Med den samme likningen som utgangspunkt, som den jeg brukte til å finne ut den bittelille kraften (akselerasjonen) som dytter oss vekk fra jorden: \(a=\frac{v^2}{r}\), men nå er det farten - v - jeg må finne.

  • radiusen er fremdeles jordens radius - 6 400 000 meter
  • a er akselerasjonen, og denne blir 9.81 \(\frac{m}{s^2}\) - altså samme som tyngdeakselerasjone, bare motsatt vei (da nuller de hverandre ut, ikke sant, og vi kan falle av overflaten)

 

Og da er det faktisk bare å sette tallene inn i den fine likningen; jeg bare løser den for v (farten) først:

\(v=\sqrt{a\cdot r}\) \(v = \sqrt{9.81 \frac{m}{s^2}\cdot 6 400 000 m} = \sqrt{62784000} \frac{m}{s} = 7924 \frac{m}{s}\)

Så, hvis man snurrer rundt i en fart på 7924 \(\frac{m}{s}\) så vil man altså falle av jordkloden... Men akkurat det tallet sier kanskje ikke så mye - jeg trenger i alle fall heller å vite hvor lang tid bruker vi på én runde da, eller med andre ord, hvor langt blir et døgn?

Da bruker  vi den klassiske \(s = v\cdot t\), og siden det er tiden jeg vil finne så blir likningen: \(t = \frac{s}{v}\).

s, eller strekningen, er jo omkretsen til jorden, som er 40 000 000 meter, og v, eller farten, regnet jeg ut over, og den er 7924 m/s:

\(t = \frac{40000000 m}{7924 \frac{m}{s}}\) = 5048 sekunder.

5048 sekunder er det samme som 5048/60 = 84.13 minutter. Hvis vi snurrer en hel runde rundt på 84 minutter vil vi altså falle av jordkloden, og ett døgn er da mindre enn en og en halv time 😀


Det der med å falle av jordkloden er forresten et vanlig argument fra Flat Earth-folka; altså, de mener at jorden kan ikke være en kule fordi da ville vi ha falt av. De kan kanskje ikke så veldig mye fysikk...

Som vanlig ruslet jeg opp til Nydalen og jobbet der, og det har jo vært en veldig fin dag i dag (det nesten så jeg ikke kan si at jeg hater høsten, faktisk 😉 ). Bildene her er tatt med nøyaktig én måneds mellomrom ♥


 

 Onsdag 29. august - om en uke, altså - holder jeg foredrag på Chateau Neuf, på Majorstuen i Oslo. Kundene er både Studentparlamentet i Oslo og Forum for vitenskapsteori ved Universitetet i Oslo, så det er et spennende oppdrag, der det er to litt forskjellige fokus som skal dekkes. Dermed ble tittelen altså

10 grunner til at jeg elsker kjernefysikk - fra Tsjernobyl til klima og miljø, og hvor kommer vi egentlig fra? (Hint: "Jesus didn't die so you could live. Stars died so you could live").

Jeg satser på å snakke om hva jeg syns er fascinerende med atomkjernen, og hva er greia med kjernefysikk - og forresten så er ikke Universitetet stedet for svart/hvitt-svar, og kanskje får du utfordret ditt syn på hva som er miljøvennlig... Og til syvende og sist så handler vel omtrent alt om å prøve å forstå; hvem er vi og hvor kommer vi fra og hvordan henger ting egentlig sammen.

Dette foredraget er gratis og åpent for alle, og jeg blir superglad hvis DU vil ta turen - spesielt hvis du er ny student ved UiO! Jeg har heller ikke planer om å løpe avgårde når jeg er ferdig med å prate, og vil gjerne svare på spørsmål/diskutere/høre synspunkter og innvendiger ♥

Kl 16 på Chateau Neuf, altså. Rom er ikke bestemt ennå.