Hopp til innhold

3

 

Denne gangen fokuserer jeg på radioaktivt avfall – sånn generelt, fra uranbasert kjernekraft (det avfallet som fins i verden i dag stammer hovedsakelig fra brensel som er laget av uran). Thorium kan jo ha en fordel på avfallssiden, sammenliknet med uran, men det kommer jeg ikke inn på i denne videoen. Alt til sin tid, liksom 😉 Jeg kommer også inn på risiko med kjernekraft sammenliknet med andre måter å produsere energi på, og nevner blant annet min favorittstatistikk: antall som dør per terrawattime produsert energi, for feks kullkraft, kjernekraft, vannkraft og solkraft.

Spørsmålene jeg svarer på, og diskuterer denne gangen er:

Jeg leste at vi har nok energi i eksisterende kjerneavfall til å gi energi til hele jorden i over 50 år. Ville det ikke i såfall være rimelig å først jobbe for å fjerne dette/minske avfallet vi allerede har?

Det jeg ikke er sikker på (ennå) er om det er 50 år som er det riktige tallet. For å være ærlig så tror jeg det er mer, men det skal jeg finne ut av, og komme tilbake til i en annen runde Sunniva svarer – lover <3

Har Norge noen interesse av å ta i bruk moderne kjernekraft, eller slåss vi som Don Quijote mot vindmøller?

Jeg er opptatt av klima og utfordringene omkring disse tema. Jeg begriper ikke hvorfor kjernefysikk og mulighetene her ikke er et tema for å redusere CO2 utslipp.

Jeg er på leting etter argumentasjon for å ta i bruk en energikilde som er utslippsfri. Så jeg spør deg som er fysiker - hvorfor bruker vi ikke radioaktivt brensel som energikilde? Er risikoen uakseptabel ?

Det lange svaret får du i videoen, men i tilfellet du ikke har 40 minutter til å sitte og se/høre på den så kan jeg gi oppsummeringen av svaret her: Mange hevder det. Jeg er totalt uenig.

Globale oppvarmingen er tydelig for de fleste av oss, og skaper store bekymringer, har kjernekraft fått ny aktualitet i Norge ? Mange fordeler...noen skumle sider hvis noe går galt. Tenke nytt på ang sikkerhet og hvor vi kan lage dette. Tenke utenfor boksen.

For å svare på spørsmålet om risiko, og diskutere kommentarene i spørsmålet rett over så tar jeg blant annet for meg 10 vanlige myter om kjernekraft – i en amerikansk sammenheng. USA er det landet i verden med desidert flest kjernekraftverk (ca 100 stykker), og derfor syns jeg det er et fornuftig utgangspunkt. De 10 mytene er:

  1. Amerikanere får mesteparten av sin årlige stråledose fra kjernekraftverk
  2. Et kjernekraftverk kan eksplodere som en atombombe
  3. Kjernekraft er dårlig for miljøet
  4. Kjernekraft er aldri trygt
  5. Det fins ingen løsning på de enorme mengdene med radioaktivt avfall som produseres
  6. De fleste amerikanere er negative til kjernekraft
  7. Et amerikansk «Tsjernobyl» ville drept tusenvis av mennesker
  8. Radioaktivt avfall kan ikke transporteres på en trygg måte
  9. Brukt kjernebrensel er dødelig i 10 000 år
  10. Kjernekraft kan ikke redusere hvor avhengige vi er av olje

 

 

PS: Basert på enkelte av kommentarene som kom under videoen (på facebook - link) så tror jeg kanskje neste Sunniva svarer må bli en slags «There’s no such thing as a free lunch»-spesial...:)

 

Hei dere 🙂 Jeg er i feriemodus om dagen, og det blir derfor litt tynt med innlegg herfra - beklager det, samtidig som jeg ikke beklager at jeg er på hytta (på Herføl) med Lise, og bare slapper av og koser meg maks. Været er fremdeles alt man kunne bedt om, og jeg bare nyter.  I morgen kveld kommer Anders utover også, og da blir det om mulig enda bedre ♥


Her kommer del 2 av "Sunniva svarer" om thorium og kjernekraft og andre relaterte spørsmål. Ikke sjans for at jeg ble "ferdig" med alle spørsmålene denne gangen heller... Ikke at det er noe poeng - jeg får stadig flere spørsmål, og det er helt supert! Keep them comin'!

Denne gangen svarte jeg på følgende spørsmål:

  1. Kan Thorium bidra til bedre brenselsbrenning?
  2. Hvilken kr verdier kan et eventuelt gjennombrud bety kommersielt?
  3. Kan vi leve av dette "etter olja"?
  4. Hvorfor snakker ingen i miljøbevegelsen om fordelene og potensialet ved thorium?
  5. Hvor står Thor Energi sin forskning oppi dette med at Halden legges ned?
  6. Mer om thorium og våpen – hvorfor går det ikke/hvorfor er det vanskelig?
  7. For at en atombombe skal eksplodere, hva er det som må til? Jeg ser at man må få uran/plutonium til å overgå den kritiske massen, men holder det alene å kjøre sammen to mindre stykker uran til en større? Eller må man også fyre av et nøytron slik at kjedereaksjonen starter?
  8. Man kan lage bomber både av uran og plutonium, men er det noe prinsipiell forskjell i de to typer bomber bortsett fra selve stoffet?
  9. Vet du hvordan vi kan nå fram til skeptikere, politikere, næringsdrivende og andre med budskapet?

Forresten så var jeg også denne gangen bittelitt usikker på om jeg var på eller ikke, så det første minuttet kan du godt spole over 😉

 

Jeg skal komme med en ny livesending om thorium (og andre temaer om kjernekraft og våpen og energi og sånn), men så lenge det er ferie, er jeg ikke sikker på når det blir... Jeg kommer selvsagt til å si i fra på Facebook-siden min på forhånd, så lik den gjerne, for å få med deg Live-sendinger, og beskjed om når jeg har skrevet nye innlegg, eller deler andre ting jeg syns er spennende, HER.

Ut i fra responsen på de to videoene jeg har laget så langt tenker jeg at dette er noe jeg vil gjøre fast, men det blir først etter sommeren. Trooor onsdag kan være en god dag for en "Sunniva svarer"-spalte 🙂

 

1

Hei dere ♥ På fredag fant jeg ut at jeg måtte få laget en liten video der jeg begynte å svare på spørsmål jeg har fått angående kjernekraft og thorium. Etter å ha tenkt en stund frem og tilbake på hvordan jeg skulle gjøre dette, landet jeg på at jeg rett og slett gikk for Facebook Live-løsningen - enkelt og rett på sak. Nå deler jeg selvsagt videoen også her, for deg som ikke fikk sett Live-sendingen, eller vil høre svarene flere ganger.

Disse spørsmålene svarer jeg på:

  • hva er thorium?
  • er det sånn at vi bare benytter 10-12 prosent av energien i uran-baserte brensel i dagens reaktorer, hvilket resulterer i at avfallet blir så radioaktivt og vanskelig å håndtere?
  • har Springfield begynt med thorium, og i såfall, er det fortsatt Homer som sitter ved kontrollbordet?
  • hva er utfordringen med å utvinne thorium i norske bergarter?
  • hvor mange år er det til den skeptiske generasjon dør ut, og nye (som deg) tar over?
  • kan man feks få fly som går på thorium, eller er det for risikabelt?
  • kommer det til å bygges ny reaktor i Halden?
  • hvorfor Norge ikke bør løegge ned Haøden-reaktoren og forskning på thorium.

Jeg bruker litt tid i starten på å bare være sikker på at jeg er live, så du kan godt spole frem til 1 minutt og 30 sekunder før jeg egentlig er i gang 😉

I morgen kommer del 2 av denne Q&A-en, på Facebook-siden min, live kl 15. Jeg blir kjempeglad hvis du vil se på (men videoen kommer til å bli liggende, og delt her på bloggen i ettertid også, altså 🙂 ), og send meg gjerne spørsmål om hva du lurer på! Jeg vet forresten at det er veldig forskjellig hva folk kan om disse temaene fra før, så for noen så har jeg kanskje ikke gått nok i dybden i svarene mine - da er det bare å stille mer utdypende spørsmål også.


Og, du!?! Jeg lurer på å gjøre dette til en slags fast spalte - Sunniva svarer, altså. Hva tenker du som leser om dette? Skal jeg prøve meg? 🙂

 

1

Hei dere, og GOD HELG 🙂 Jeg har tilbrakt et døgn på Løkken i Trøndelag, der jeg har deltatt på Bergmannskonferansen – som foredragsholder, med foredraget Er thorium den nye oljen? Da syns jeg jo det passer litt ekstra godt å dele den siste delen av thorium-føljetongen (ikke at jeg er ferdig med thorium, men denne delen avslutter det jeg hadde planer om å dele fra doktoravhandlingen i denne omgangen).

Hva er greia med thorium, del VI

Fordeler og utfordringer med thorium-brenselssyklusen

Aller først: Det fins mer thorium i jordskorpen, enn uran (ca fire ganger mer, faktisk). Under de rette forutsetningene kan thorium-basert brensel produsere mye mindre langlivet radioaktivt avfall, og så å si null plutonium – begge deler er (antageligvis) med på å gjøre thorium-basert brensel mer spiselig for publikum. Det er også mulig å breede, eller nesten-breede, i et et termisk nøytronspektrum. Det betyr at at det er mulig å få ut mer energi fra brenselet, til og med med dagens reaktorteknologi.

På den mer «nagative siden» så er thorium-brenselssyklusen avhengig av nøytroner «utenfra», og det er utfordringer med gamma-stråling fra uran-232. Uran-232 produseres i små mengder i alle typer brensel som inneholder thorium – på to forskjellige måter som begge starter med et nøytron med høy energi:

Uran-232-isotopen har en relativt kort halveringstid, på 68.9 år, og den ender til slutt opp i bly-208, som sender fra seg en gammastråle på 2.6 MeV (fra sin første eksiterte tilstand – for de som er interessert i sånt 😉 ). Denne gammastrålingen gjør brukt thorium-brensel svært vanskelig å håndtere, og det kreves kraftig skjerming når man skal reprosessere, og lage nytt brensel. Den mest utfordrende delen av thorium-brenselssyklusen er dermed baksiden (back end). Og reprossesering er viktig, ellers blir påstanden om at man produserer mindre avfall ikke sann. Det at det alltid fins uran-232 i brukt thorium-brensel er dog ikke bare negativt – det er nemlig med på å gjøre dette brenselet mye sikrere med tanke på spreding/smugling og våpenproduksjon: For det første virker gamma-strålingen på 2.6 MeV som en signatur på brenselet, som gjør det veldig lett å detektere – smugling av thorium-brensel vil være lett å oppdage. For det andre gjør uran-232 (og den påfølgende gamma-strålingen på 2.6 MeV) det mye vanskeligere å produsere våpen fra thorium-baserte brensel enn fra uran-baserte brensel – noe som kan være en fordel med tanke på publikums aksept for teknologien.

Sist, men ikke minst, så kan det å blande thorium med våpenmateriale (altså høyanriket uran) være en utmerket måte å «brenne», og dermed nøytralisere/kvitte seg med, alt det våpengraderet uranet som allerede eksisterer rundt omkring i kjernevåpen.


Resten av innleggene i denne føljetongen kan lese her: Del I, del II, del III, del IV, og del V.


Det har vært et nydelig døgn i Trøndelag: Solen har varmet, og det var helt FULLT av hestehov langs store deler av veien mellom Løken og Værnes – sånt gjør meg så glad ♥ Så syns jeg jo det er veldig gøy å være på talerlisten sammen med så mange andre absurd flinke folk, på en konferanse med tema smart fremtid; at jeg er interessant nok til at mine tanker er av interesse.

Det obligatoriske glasset på flyplassen når oppdraget er ferdig levert, og jeg kan sitte og slappe av og jobbe litt - altså ♥

Det er forresten selvsagt ikke noe ja/nei-svar på spørsmålet i tittelen på foredragt, og det handlet jo i stor grad om denne delen fra doktoravhandlingen min 🙂

Påsken er over (og vel så det), men det er ikke føljetongen om thorium riktig ennå - her kommer del fem.

Jeg tror forresten jeg har gjort noen valg med tanke på farge og "rød tråd" for bryllupet som jo kommer til å komme (nei, vi har ikke bestemt dato, men det blir i 2019, helt sikkert), og jeg kommer nok til å dele litt bryllup her inne fremover - i tillegg til oppdateringen om plutoniumeksperiment, og andre kjernefysikk og forskning-ting, selvsagt. Regner med det ikke kommer som noe stort sjokk at det å planlegge bryllup natrulig nok blir en del av tankene mine i større eller mindre grad i mpnedene fremover - litt bridezilla må man ha lov til å bli 😉 Dere kan jo gjerne gjette på hvilke farger dere tror kommer til å gå igjen i bryllupet til Anders og meg...

Greia med thorium, DEL V

I motsetning til uran så har thorium ingen fissil/spaltbar isotop i seg, sånn som man finner det i naturen (uran har isotopen uran-235, som altså er spaltbar). For å starte prosessen der thorium-232 (som man finner thorium ute i naturen) forvandles til uran-233 trenger man en nøytronkilde (i uranbrensel så er denne kilden fissilt uran-235, som altså allerede er tilstede). Det fins flere mulige valg nøytronkilde: En ekstern kilde - en aksellerator som produserer nøytroner ved spallasjon av feks bly (som ble foreslått av carlo Rubbia), bygge opp en viss mengde uran-233 som videre kan brukes som nøytronkilde (en catch-22 her er at du trenger å ha throium-brenselssyklusen gående for å kunne starte thorium-brenselssyklusen for å produsere uran-233), plutonium fra resirkulert uranbrensel, eller, som denne avhandlingen tar for seg (Artikkel 1), rent eller så å si rent uran-235.

Thorium-brenselssyklusen trenger ett nøytron for å omdanne thorium-232 til uran-233, og ett nøytron for å fisjonere (spalte) uran-233, for hver eneste nøytron-generasjon. Siden Eta og Alpha (som det sto om i del 4 av denne føljetongen, som det er linket til neders i dette innlegget) er det de er, er det i prinsippet mulig å breede i et termisk nøytronspektrum (altås med nøytroner med lav energi). I det som ble kalt the Shippingport Light Water Breeder Reactor program ble det demonstrert at breeding absolutt var mulig i en lettvannsreaktor (som betyr termisk nøytronspektrum). Denne reaktoren hadde dog en meget spesiell geometri, og den ble aldri kommersialisert.

Andre strategier som kan brukes for å oppnå breeding er:

  • å fjerne nøytrongifter som spiser nøytroner (hovedsakelig fisjonsprodukter): saltsmeltereaktor-teknologi (MSR)
  • å bruke en ekstern nøytronkilde (ADS)

Ingen av disse alternativene er "off the shelf", og de er ikke egentlig realistiske valg per i dag.

Uavhengig av dette; selv om breeding er vanskelig å få til, så er det mulig å forbedre breeding-ratioen sammenliknet med standard uran-brensel i en standard trykkvannsreaktor allerede "i dag". Ved å bruke denne siste strategien vil man også få thorium inn i den kjernefysiske brensels-miksen, og på den måten drøye uranressursene i verden.


Resten av denne føljetongen kan leses nedenfor 🙂

Påskekrim á la SunnivaRose

Påskekrim DEL II

Påskekrim, del III

Dr. Rose-jubileum, og thorium-brenselssyklusen (påskekrim del 4)

I dag er det nøyaktig ett år siden jeg forvarte doktogradsavhandlingen min, og på denne tiden den 29. mars 2017 hadde jeg fått beskjed om at komiteen godkjente disputasen min (og jeg var så absurd lettet at jeg tror ikke jeg kan forklare det en gang). Det passer derfor ekstra godt at vi har kommet frem til "hvorfor thorium?" i føljetongen her, og hvis du har lyst til å se hva jeg snakket om på prøveforelesningen for et år siden (temaet her har ikke å gjøre med eget forskningsrabeid, så ikke bli forvirret over at det ikke er noe thorium i denne filmen 😉 ) kan du se filmen her - eller scrolle litt lenger ned, til dagens episode:

Greia med thorium, DEL IV

Thorium-brenselssyklusen - hvorfor thorium?

Thorium, grunnstoff nummer 90, er et svakt radioaktivt materiale vi finner i naturen, som ble oppdaget i Norge i 1828 av den svenske kjemikeren Jöns Jacob Berzelius. Berzelius oppkalte det nye grunnstoffet etter tordenguden Thor. Det er estimert at Norge har mer enn 100 kilotonn thorium - som utgjør en betydeliog andel av den totale mengden av de globale reservene, på ca 3 megatonn. Thorium fins i små mengder overalt i jordskorpen, med gjennomsnittlig konsentrasjon på 10 ppm. Det betyr at thorium er 4 ganger mer vanlig enn uran.

I naturen er thorium et monoisotopisk grunnstoff - det betår kun av den ikke-fissile isotopen thorium-232, som enkelt kan gjøres om til den fissile uran-isotopen uran-233. Thorium er altså et fertilt materiale. Thorium-brenselssyklusen starter med at thorium absorberer et nøytron, som dermed henfaller til protaktinium-233, og deretter viodere til uran-233:

n+Th-232 --> Th-233(beta-minus, 22 minutter) Pa-233(beta-minus, 27 dager) U-233

Uran-233 er den kjernen som faktisk spaltes etter å ha bli truffet av et nøytron, og den er dermed hovedansvarlig for den energien som frigjøres i throium-baserte brensel. Den tilsvarende prosessen i uran-brenselssyklusen er den fertile uran-238, som fanger inn et nøytron, og blir omdannet til fissilt olutonium-239:

n+U-238 --> U-239(beta-minus, 24 minutter) Np-239(beta-minus, 2.4 dager) Pu-239

I figur 4 kan man se at grunnen til at det går an å si at thorium er et "bedre brenselsmateriale" enn uran er på grunn av de kjenrefysiske egenskapene til uran-233 - som er helt fantastiske! Antall nøytroner som blir frigjort per nøytron som absorberes (Eta) er høyere i det termiske området enn for plutonium-239, og antall kjerner som absorberes sammenliknet med de som fisjonerer (når de treffes av et nøytron - Alpha), er lavere i det termiske området enn for plutonium-239.

Dette betyr at det produseres mer nytt fissilt materiale når thorium er den fertile isotopen enn når det er uran-238 (i det termiske nøytron-området). I tillegg blir det produsert mindre langlivet avfall med thorium-232 som den fertile isotopen enn uran-238, siden uran-233 oftere fisjonerer når den treffes av et nøytron enn plutonium-239. Det er også nødvendig med mange flere nøytroninnfangninger etter hverandre for å lage et transuran - 5 versus 1.


Denne føljetongen er ikke helt over ennå, men det blir ingen ny episode i løpet av de neste dagene; i morgen tidlig-tidlig setter Anders og jeg oss nemlig på et fly til Roma, og der skal vi slappe av og kose oss de neste dagene ♥

God påske til alle fine lesere! 

Greia med thorium, DEL III

Hei onsdag og siste arbiedsdag før det er påskeferie for alle (ok, ikke absolutt alle, da, jeg vet det er noen som må være på jobb når det er helligdager også - og takk til dere som gjør sånne jobber for det!). I morgen er det ett år siden disputas, og dette bildet dukket opp i FB-feeden min i dag...den følelsen jeg hadde for akkurat ett år siden, den var virkelig ikke god, altså 😛

Men nå vet jeg jo at det gikk ganske bra ("She fought well", står det blant annet i rapporten om disputasen, så det er jo ikke så aller verst), og som kjent så markerer jeg dette jubileet denne påsken med føljetong av deler av avhandlingen. DEL I ligger her, og DEL II ligger her, og i dag er det altså klart for DEL III:

Brenselssyklusen

Generelt så starter brenselssyklusen til et kjernekraftverk (ofte bare "fuel cycle" eller brenselssyklus) med utvinning av brenselsmaterialene (uran, thorium), og slutter med endelig deponering av avfall. Målet er å få så mye energi som mulig ut av materialet, innenfor grensene man har satt for at kjernekraftverkene skal drives sikkert.

Det er to hovedstrategier for brenselssyklusen:

  1. Once thorugh cycle ("en gang igjennom"-syklus), der man anser brukt brensel som avfall, etter at det har vært inne i reaktoren. Denne varianten er den mest økonomiske så lenge uran som råvare er billig og lett tilgjengelig. På den annen side så får man produsert mest avfall på denne måten, enn med den andre strategien.
  2. Reprossesering og closing the fuel cycle (lukke brenselssyklusen). Med denne strategien blir brukt brensel sett på som en ressurs, som man resirkulerer. Denne brenselssyklusen produserer minre avfall enn den første strategien, men den er dyrere på kort sikt, så lenge uran er en rimelig ressurs. Dessuten kan denne syklusen få folk til å bli bekymret for våpenproduskjon. Reprossesering kan gjøre én gang (det er standardvalget for uran/plutonium-brenselssyklusen, i de landene som faktisk reprossereser), eller flere ganger (som det som presenteres i den første artikkelen). Det ultimate målet er å produsere mer nytt spaltabrt material i løpet av syklusen, enn den som brukes.

Fra et kjernefysisk perspektiv (og fokuset i denne avhandlingen) er den mest "interessante" delen av brenselssyklusen er fysikken i de komplekse, kjernefysiske prosessene som skjer i reaktorkjenrnen - som inkluder et stor antall kjernefysiske reaksjoner og henfall.

Nøytronbudsjettet

Nøytronene driver kjedereakjsonen, og er dessuten ansvarlige for å transformere fertilt materiale til fissilt materiale - noe som er helt grunnelggende viktig for  thorium-brenselssyklusen, der det faktisk ikke fins noen fissil isotop. Nytronbudsjettet er dermed svært viktig for hvordan reaktoren oppfører seg. I fisjonsprosessen blir det i gjennosmnitt frigjort mer enn ett nøytron. Det betyr at dersom tapet av nøytroner til moderator, materiale i strukturene rundt, og brenselet selv (etc) ikke er for stort, burde det være nok nøytroner tilgjengelig til å transformere fertilt materiale (thorium-232 - thorium-brenselssyklus, uran-238 - uran-brenselssyklus) til fissilt material (uran-233 -thorium-brenselssyklus, plutonium-239 - uran-brenselssyklus), i tillegg til det ene nøytronet som trengs for å holde kjedereaksjonen gående. Et mål på hvor bra dette skjer i brenselet er breeding ratio, som er raten fissilt materiale produseres delt på raten det brukes. Hvis en reaktor lager mer fissilt materiale, fra det fertiel, enn det den bruker, sier man at reakoren "avler" (breeding).

Hvis 2 nøytroner blir frigitt per fisjon (som i gjennomsnitt er sant), er breeding i prinsippet mulig. Dessverre, som allerede nevnt, så taper man nøytroner som blir "spist opp" andre steder i reaktoren.

Greia med thorium, DEL II

Hei dere, her kommer del 2 av "påskekrimmen" jeg startet i går 🙂 DEL I kan lese her.

Kjernekraft - i går, i dag, og i morgen

Kjernekraft

I går

Den 2. desember 1942 gikk verdens aller første menneskelagde kjernereaktor - Chicago Pile no 1 - kritisk, under Enrico Fermis ledelse. 12 år etter dette, den 27. juni 1954, ble det produsert elektrisistet på Obnisk-kjernekraftverket i Russland - verdens første sivile kjernekraftverk. To tiår senere, i løpet av 1970-årene, ble det produsert 100 GW elektrisitet fra kjernekraft, og selv om det var de som var negativt innstilt til alt som hadde med atom å gjøre, så var majoriteten forholdsvis positiv. Dette holdt seg stort sett inntil Tsjernobyl-ulykken, som skjedde den 26. april 1986. En konsekvens av denne ulykken var at den virkelig fikk bremset ned den teknologiske utviklingen innen kjernekraft. Tsjernobyl satte ikke en stopp på kjernekraft som en del av verdens energimiks, men fikk altså virkelig saknet utviklingen av neste generasjons kjernekraftverk. I stedet for å erstatte gamle kjernekraftverk med ny og bedre teknologi, har heller dekommisjoneringsdatoene blitt kraftig forlenget, og forskning og utvikling utsatt.

Status i dag

Gjennomsnittlig befolkningsvekst er på ca 80 millioner per år. Verdens totale befolkning har gått fra 3.7 milliarder i 1970, til nesten 7.5 milliarder i 2016 (note: teksten ble skrevet i desember 2016 😉 ), og FN antar at vi kommer til på nå 10 milliarder mennesker i verden rundt 2050. Etter dette antar man også vekst, selv om den kommer til å skje saktere.

Med både flere mennesker, og økt energiforbruk per capita, antar man at det total energibehovet vil øke med rundt 50% fra 2012 til 2014. den største økningen skjer i Kina og India, som til sammen står for ca 50% av veksten.

 

Energisikkerhet defineres av IEA (International Energy Agency) som "uavbrutt tilgang til energikilder til en rimelig pris", og anses som helt grunnleggende for en sikker, stabil og fredelig verden. Det å skulle oppnå energisikkerhet for alle har dog vist seg vanskelig. CO2-utslippene våre har ført til en menneskeskapt klimaendring. I dag er den aller største kilden til energi fossil (olje, kull og gass) - hvilket bidrar til klimaendringer med sine store CO2-utslipp.

Ettersom frykten for klimaendringer har økt, og frykten for et nytt Tsjernobyl har minket, har kjernekraft igjen blitt en mulig løsning på den økte energietterspørselen. I FNs klimapanels siste rapport (no. 5, som ble publisert i 2014 - altså 3 år etter Fukushima-ulykken) blir kjernekraft trukket frem som en viktig del av en mulig løsning på menneskeskapte klimaendringer. De grupperer kjernekraft sammen med andre fornybare energikilder, som nøkkelelementer i et lavkarbons energisystem, sammen med CO2-fangst og -lagring (CCS). Spørsmålet "What are the main mitigation options in the energy supply sector?" besvares på følgende måte:

No single mitigation option in the energy supply sector will be sufficient (...) Achieving deep [cuts in greenhouse gas (GHG) emissions] will require more intensive use of low-GHG technologies such as renewable energy, nuclear energy, and carbon dioxide capture and storage (CCS). (Min understreking)

Klimapanelet foreslår at bruken av kjernekraft bør økes, og at denne energiformen kan erstatte den fossile baselasten (elektrisitet produsert med olje, gass, kull) mange steder i verden.

Per 2014 er det 440 kjernekraftverk i verden. Disse produserer ca 11% av all elektrisitet på verdensbasis.

I morgen

Hvis vi antar at anbefalingene til IPCC følges så vil det bli en utbygging av kjernekraft. Mer enn 60 reaktorer er under bygging (per januar 2017), og elektrisitetsprosuksjon fra kjernekraft er forvntet å øke proporsjonalt med den total elektrisitetsproduksjonen over de neste 20 årene. Denne utbyggingen vil mest sannsynlig hovedsakelig bestå av velkjent kjerneteknologi - det vil si GenerasjonIII(+) termiske reaktorer, som kjører på uran/plutonium-brenselssyklusen. Uten resirkulering av avfallet/(det brukte) brenselet vil uran, som en lett tilgjengelig og rimelig ressurs, etterhvert forsvinne. I tillegg vil man få bygget opp store mengder radioaktivt avfall. Thorium-brenselssyklusen kan være en del av løsningen på begge disse problemene:

Det fins mer thorium enn uran på Jorden, og selv om både uran- og thoriumbaserte brensel kan "avles" (breeding) - dermed gi opp til 200 ganger mer energi fra brenselet - ser public opinion ut til å være mer positiv når det gjelder thorium, fordi det er noe "nytt". Offentlig aksept, heller enn økonomi, er hovedbarrieren mot utvikling i Vesten. I Kina og India er folket stoltere av sine kjernefysiske prestasjoner, og det er en sterk støtte til kjernekraft. Videre utvikling av kjernekraft vil derfor i hovedsak skje i denne delen av verden. "Avl" eller nesten-"avl" (breeding) er dessuten mulig med termiske nøytroner i thoriumbasert brensel. I tillegg blir det produsert neglisjerbare mengde av plutonium fra thoriumbaserte brensel, sammenliknet med uranbaserte brensel, og det er mye vanskeligere å produsere våpen fra denne brenselssyklusen. Dersom thoriumbaserte brensel multi-resirkuleres kan hele avfallsproblematikken redusere meget kraftig.

 

Hei dere, nyter dere ferien (hvis dere har ferie)? Hvis dere jobber (som meg) så nyter dere kanskje at det er så utrolig mye mer stille og rolig enn det pleier - i alle fall er det sånn i Oslo! Jeg har ikke noe sånn forhold til påske og fjellet, så det at det er stille i byen, at snøen smelter (den gjorde i alle fall det i går 😉 ), og at Hestehoven begynner å titte frem (jeg har sett små løkskudd, så jeg krysser fingrene for at Hestehoven er her før påsken er over), det er dét som er påske for meg ♥

Men over til tittelen: Jeg har vel kanskje ikke krim, akkurat, men en liten føljetong tenkte jeg å ta her nå i påsken (ferie eller ei). Om 3 dager har jeg nemlig disputasjubileum, som betyr at jeg har kunnet kalle meg Dr. Rose i ett år, og det vil jeg markere med å dele litt fra doktorgradsavhandlingen min. De mest innfløkte detaljene fra oppgaven tror jeg ikke det er så mange som er her inne og leser som har interesse av, men introduksjonsdelen av den, der jeg snakker om kjernekraft og thorium - den er kanskje av interesse for flere...spesielt med tanke på at noen "likte meg bedre da jeg snakket om thorium" 😉 Jeg håper dere vil like det!

Greia med thorium, DEL1

Hvis du fulgte med i norske medier i årene mellom 2005 og 2008, var det nærmest umulig ikke å få med seg at det var mye snakk om thorium, thorium-brensel, og "thorium-reaktorer". Thorium ble fremstilt som "den nye kjernekraften"; noe som var helt annerledes, og mye bedre enn den "gamle", uranbaserte kjernekraften. Det ble dessuten også påstått at thorium kunne bli "Norges neste olje", siden et av verdens største thorium-reserver ligger i Norge.

Men gratis lunsj fins ikke. Thorium er ikke sendt fra oven - noe "gude-gitt", ei heller er det fienden. Hele kjernekraftdebatten er ofte, dessverre, veldig polarisert. Thorium er et grunnstoff som, under de riktige omstendighetene, kan bli gjort om til den helt utmerkede fissile (spaltbare) kjernen uran-233, og på grunn av egenskapene til denne uran-isotopen, kan det hele bli bedre enn tradisjonelt uran-basert brensel. Dog er det ikke himmel og jord i forskjell på thorium-brenselssyklusen og uran- og uran/plutonium-brenselssyklusen. Thorium-brenselsyklusen er et spesialtilfelle av den mer generelle brenselsyklusen for kjernekraft, som altså kan ha noen veldig positive sider ved seg:

  • under de rette forutsetningene kan reaktorer som bruker thorium-baserte brensel produsere mye mindre langlivet, radioaktivt avfall
  • det fins mer thorium på jorden enn uran (ca 4 ganger så mye)
  • det blir så å si ikke produsert plutonium fra thorium-baserte brensel - noe som kan være positivt med tanke på public opinion
  • det er en mulighet for å få til breeding, eller nesten-breeding (breeding betyr at man produserer mer fissilt materiale enn det man bruker - det høres nesten ut som evighetsmaskin, bare at det ikke er det, og at det er sant 🙂 ), i et termisk nøytronspektrum
  • det er vanskeligere å produsere våpen fra thorium enn fra uran eller plutonium, fordi den fissile uran-233 alltid vil være forurenset av uran-232, som gir fra seg gamma-stråling med veldig høy energi (som gjør det nærmest umulig å lage våpen av)

To av de største utfordringene i vår tid er energi-sikkerhet og klimaendringer. Vi trenger tilgang til nok, rimelig og pålitelig energi, og vi trenger å produsere denne uten CO2-utslipp (eller så nært det lar seg gjøre). Thorium som brensel i kjernekraftverk kan være en (viktig) brikke i løsningen på disse utfordringene.


...og sånn lyder altså introduksjonen (de 2 første sidene) av doktorgradsavhandlingen min 🙂

I morgen kommer DEL 2, med en liten historisk gjennomgang av kjernekraft i går og i dag.

 

 

Hei dere, da er en ny uke allerede ordentlig godt i gang, og jeg syns ikke noenting passer bedre enn å følge opp dette med stråling og myter - som jeg også har lovet at jeg skulle gjøre (se, hun holder det hun lover :P). Det begynte med dette foreadraget/innlegget, der jeg kun delte 6 av de 10 mytene fra foredraget, fordi de 4 siste syntes jeg trengte litt mer enn bare to/tre setninger. (Ikke for det: De 6 i innlegget kan sikkert også gjerne få litt mer utfyllende informasjon - gi et pip, eller rop ut, hvis det er noe du vil høre mer om 🙂 )

Her kommer det en oppfølging som faktisk ikke er en av de 4 ekstra mytene (de kommer de også), men snarere en bonus for å forstå mer av det som er myter og det som er fakta.

Greia med stråling er man må følge strålevernsregler, og det aller mest grunnleggende innen strålevern er det såkalte ALARA-prinsippet, som høres sånn ut:

Stråledoser skal holdes «Så Lavt Som Rimelig Mulig» - ALARA-prinsippet. (ALARA står for As Low As Reasonably Achieveable)

Dette betyr rett og slett at de grensene man har for stråledoser ikke er satt etter "så høyt som det er trygt" (som man kanskje gjerne tenker seg), men altså "så lavt som rimelig mulig". Det er selvsagt en stor og viktig forskjell, som jeg tror veldig mange (de fleste, kanskje?) ikke er klar over. Man har på en måte bestemt seg for at stråledoser alltid skal minimeres så mye som mulig, uansett om man er milevis unna noe som kunne begynne å være farlig på noe som helst vis 🙂

Når jeg feks skal være med på plutoniumseksperiment om ca en måned (jeg gleder meg VILT; det er en direkte oppfølging av den siste artikkelen i doktorgaden min, der vi forhåpentligvis får bekreftet de resultatene vi fikk da - nå har labben nemlig fått nytt og mye mer nøyaktig utstyr) så har jeg lov til å bli utsatt for 20 ganger mer stråling (20 millisievert), enn det en «privatperson» har lov til (1 millisievert). Hvis det av en eller annen grunn skulle være nødvendig (det kommer ikke til å skje på labben her på Blindern; her har jeg aldri fått en stråledose som er stor nok til at den har vært målbar en gang med de dosimetrene vi bruker) kan jeg motta en dose som er 50 ganger høyere enn det en privatperson ifølge lovverket har anledning til, i løpet av ett år. Dette er absolutt ikke fordi jeg er superwoman, som tåler 50 ganger større påkjenninger enn en hvilken som helst annen person, eller at jeg ikke bryr meg om min egen helse og ofrer alt for vitenskapen. (Altså, jeg elsker stort sett forskningen, men jeg er ikke interessert i å korte ned min forventede levealder av den grunn).

Årsaken til at jeg og mine kolleger har andre dosegrenser enn resten av befolkningen er nettopp ALARA: For befolkningen generelt er det enkelt og greit å si at de nesten ikke skal motta noen ekstra stråledose, mens for de som er yrkesutsatte så er dette veldig upraktisk. Dosegrensene er altså satt så lavt som rimelig mulig – uten at det er noen grunn til å vente at for eksempel dobbel dose vil være skadelig, eller til og med 10 ganger så stor dose.

Min ville gjetning er at dersom en privatperson hadde fått en stråledose på 50 millisievert så ville avisforsidene hatt overskrifter omtrent som dette: «KVINNE MOTTOK 50 GANGER HØYERE STRÅLEDOSE ENN ALARMGRENSEN!», og de ville sikkert solgt godt den dagen. (Det hele ville selvsagt ha vært komplett med et festlig radioaktivitetstegn inne i O-en i "ATOM" - noen ganger er folk så utrolig forutsigbare.) I virkeligheten betyr det «bare» at hun har fått den samme stråledosen som jeg kunne ha fått på et år, uten at det hadde vært noe voldsomt spesielt med dét.