Påsken er over (og vel så det), men det er ikke føljetongen om thorium riktig ennå - her kommer del fem.

Jeg tror forresten jeg har gjort noen valg med tanke på farge og "rød tråd" for bryllupet som jo kommer til å komme (nei, vi har ikke bestemt dato, men det blir i 2019, helt sikkert), og jeg kommer nok til å dele litt bryllup her inne fremover - i tillegg til oppdateringen om plutoniumeksperiment, og andre kjernefysikk og forskning-ting, selvsagt. Regner med det ikke kommer som noe stort sjokk at det å planlegge bryllup natrulig nok blir en del av tankene mine i større eller mindre grad i mpnedene fremover - litt bridezilla må man ha lov til å bli 😉 Dere kan jo gjerne gjette på hvilke farger dere tror kommer til å gå igjen i bryllupet til Anders og meg...

Greia med thorium, DEL V

I motsetning til uran så har thorium ingen fissil/spaltbar isotop i seg, sånn som man finner det i naturen (uran har isotopen uran-235, som altså er spaltbar). For å starte prosessen der thorium-232 (som man finner thorium ute i naturen) forvandles til uran-233 trenger man en nøytronkilde (i uranbrensel så er denne kilden fissilt uran-235, som altså allerede er tilstede). Det fins flere mulige valg nøytronkilde: En ekstern kilde - en aksellerator som produserer nøytroner ved spallasjon av feks bly (som ble foreslått av carlo Rubbia), bygge opp en viss mengde uran-233 som videre kan brukes som nøytronkilde (en catch-22 her er at du trenger å ha throium-brenselssyklusen gående for å kunne starte thorium-brenselssyklusen for å produsere uran-233), plutonium fra resirkulert uranbrensel, eller, som denne avhandlingen tar for seg (Artikkel 1), rent eller så å si rent uran-235.

Thorium-brenselssyklusen trenger ett nøytron for å omdanne thorium-232 til uran-233, og ett nøytron for å fisjonere (spalte) uran-233, for hver eneste nøytron-generasjon. Siden Eta og Alpha (som det sto om i del 4 av denne føljetongen, som det er linket til neders i dette innlegget) er det de er, er det i prinsippet mulig å breede i et termisk nøytronspektrum (altås med nøytroner med lav energi). I det som ble kalt the Shippingport Light Water Breeder Reactor program ble det demonstrert at breeding absolutt var mulig i en lettvannsreaktor (som betyr termisk nøytronspektrum). Denne reaktoren hadde dog en meget spesiell geometri, og den ble aldri kommersialisert.

Andre strategier som kan brukes for å oppnå breeding er:

  • å fjerne nøytrongifter som spiser nøytroner (hovedsakelig fisjonsprodukter): saltsmeltereaktor-teknologi (MSR)
  • å bruke en ekstern nøytronkilde (ADS)

Ingen av disse alternativene er "off the shelf", og de er ikke egentlig realistiske valg per i dag.

Uavhengig av dette; selv om breeding er vanskelig å få til, så er det mulig å forbedre breeding-ratioen sammenliknet med standard uran-brensel i en standard trykkvannsreaktor allerede "i dag". Ved å bruke denne siste strategien vil man også få thorium inn i den kjernefysiske brensels-miksen, og på den måten drøye uranressursene i verden.


Resten av denne føljetongen kan leses nedenfor 🙂

Påskekrim á la SunnivaRose

Påskekrim DEL II

Påskekrim, del III

Dr. Rose-jubileum, og thorium-brenselssyklusen (påskekrim del 4)

I dag er det nøyaktig ett år siden jeg forvarte doktogradsavhandlingen min, og på denne tiden den 29. mars 2017 hadde jeg fått beskjed om at komiteen godkjente disputasen min (og jeg var så absurd lettet at jeg tror ikke jeg kan forklare det en gang). Det passer derfor ekstra godt at vi har kommet frem til "hvorfor thorium?" i føljetongen her, og hvis du har lyst til å se hva jeg snakket om på prøveforelesningen for et år siden (temaet her har ikke å gjøre med eget forskningsrabeid, så ikke bli forvirret over at det ikke er noe thorium i denne filmen 😉 ) kan du se filmen her - eller scrolle litt lenger ned, til dagens episode:

Greia med thorium, DEL IV

Thorium-brenselssyklusen - hvorfor thorium?

Thorium, grunnstoff nummer 90, er et svakt radioaktivt materiale vi finner i naturen, som ble oppdaget i Norge i 1828 av den svenske kjemikeren Jöns Jacob Berzelius. Berzelius oppkalte det nye grunnstoffet etter tordenguden Thor. Det er estimert at Norge har mer enn 100 kilotonn thorium - som utgjør en betydeliog andel av den totale mengden av de globale reservene, på ca 3 megatonn. Thorium fins i små mengder overalt i jordskorpen, med gjennomsnittlig konsentrasjon på 10 ppm. Det betyr at thorium er 4 ganger mer vanlig enn uran.

I naturen er thorium et monoisotopisk grunnstoff - det betår kun av den ikke-fissile isotopen thorium-232, som enkelt kan gjøres om til den fissile uran-isotopen uran-233. Thorium er altså et fertilt materiale. Thorium-brenselssyklusen starter med at thorium absorberer et nøytron, som dermed henfaller til protaktinium-233, og deretter viodere til uran-233:

n+Th-232 --> Th-233(beta-minus, 22 minutter) Pa-233(beta-minus, 27 dager) U-233

Uran-233 er den kjernen som faktisk spaltes etter å ha bli truffet av et nøytron, og den er dermed hovedansvarlig for den energien som frigjøres i throium-baserte brensel. Den tilsvarende prosessen i uran-brenselssyklusen er den fertile uran-238, som fanger inn et nøytron, og blir omdannet til fissilt olutonium-239:

n+U-238 --> U-239(beta-minus, 24 minutter) Np-239(beta-minus, 2.4 dager) Pu-239

I figur 4 kan man se at grunnen til at det går an å si at thorium er et "bedre brenselsmateriale" enn uran er på grunn av de kjenrefysiske egenskapene til uran-233 - som er helt fantastiske! Antall nøytroner som blir frigjort per nøytron som absorberes (Eta) er høyere i det termiske området enn for plutonium-239, og antall kjerner som absorberes sammenliknet med de som fisjonerer (når de treffes av et nøytron - Alpha), er lavere i det termiske området enn for plutonium-239.

Dette betyr at det produseres mer nytt fissilt materiale når thorium er den fertile isotopen enn når det er uran-238 (i det termiske nøytron-området). I tillegg blir det produsert mindre langlivet avfall med thorium-232 som den fertile isotopen enn uran-238, siden uran-233 oftere fisjonerer når den treffes av et nøytron enn plutonium-239. Det er også nødvendig med mange flere nøytroninnfangninger etter hverandre for å lage et transuran - 5 versus 1.


Denne føljetongen er ikke helt over ennå, men det blir ingen ny episode i løpet av de neste dagene; i morgen tidlig-tidlig setter Anders og jeg oss nemlig på et fly til Roma, og der skal vi slappe av og kose oss de neste dagene ♥

God påske til alle fine lesere! 

Greia med thorium, DEL III

Hei onsdag og siste arbiedsdag før det er påskeferie for alle (ok, ikke absolutt alle, da, jeg vet det er noen som må være på jobb når det er helligdager også - og takk til dere som gjør sånne jobber for det!). I morgen er det ett år siden disputas, og dette bildet dukket opp i FB-feeden min i dag...den følelsen jeg hadde for akkurat ett år siden, den var virkelig ikke god, altså 😛

Men nå vet jeg jo at det gikk ganske bra ("She fought well", står det blant annet i rapporten om disputasen, så det er jo ikke så aller verst), og som kjent så markerer jeg dette jubileet denne påsken med føljetong av deler av avhandlingen. DEL I ligger her, og DEL II ligger her, og i dag er det altså klart for DEL III:

Brenselssyklusen

Generelt så starter brenselssyklusen til et kjernekraftverk (ofte bare "fuel cycle" eller brenselssyklus) med utvinning av brenselsmaterialene (uran, thorium), og slutter med endelig deponering av avfall. Målet er å få så mye energi som mulig ut av materialet, innenfor grensene man har satt for at kjernekraftverkene skal drives sikkert.

Det er to hovedstrategier for brenselssyklusen:

  1. Once thorugh cycle ("en gang igjennom"-syklus), der man anser brukt brensel som avfall, etter at det har vært inne i reaktoren. Denne varianten er den mest økonomiske så lenge uran som råvare er billig og lett tilgjengelig. På den annen side så får man produsert mest avfall på denne måten, enn med den andre strategien.
  2. Reprossesering og closing the fuel cycle (lukke brenselssyklusen). Med denne strategien blir brukt brensel sett på som en ressurs, som man resirkulerer. Denne brenselssyklusen produserer minre avfall enn den første strategien, men den er dyrere på kort sikt, så lenge uran er en rimelig ressurs. Dessuten kan denne syklusen få folk til å bli bekymret for våpenproduskjon. Reprossesering kan gjøre én gang (det er standardvalget for uran/plutonium-brenselssyklusen, i de landene som faktisk reprossereser), eller flere ganger (som det som presenteres i den første artikkelen). Det ultimate målet er å produsere mer nytt spaltabrt material i løpet av syklusen, enn den som brukes.

Fra et kjernefysisk perspektiv (og fokuset i denne avhandlingen) er den mest "interessante" delen av brenselssyklusen er fysikken i de komplekse, kjernefysiske prosessene som skjer i reaktorkjenrnen - som inkluder et stor antall kjernefysiske reaksjoner og henfall.

Nøytronbudsjettet

Nøytronene driver kjedereakjsonen, og er dessuten ansvarlige for å transformere fertilt materiale til fissilt materiale - noe som er helt grunnelggende viktig for  thorium-brenselssyklusen, der det faktisk ikke fins noen fissil isotop. Nytronbudsjettet er dermed svært viktig for hvordan reaktoren oppfører seg. I fisjonsprosessen blir det i gjennosmnitt frigjort mer enn ett nøytron. Det betyr at dersom tapet av nøytroner til moderator, materiale i strukturene rundt, og brenselet selv (etc) ikke er for stort, burde det være nok nøytroner tilgjengelig til å transformere fertilt materiale (thorium-232 - thorium-brenselssyklus, uran-238 - uran-brenselssyklus) til fissilt material (uran-233 -thorium-brenselssyklus, plutonium-239 - uran-brenselssyklus), i tillegg til det ene nøytronet som trengs for å holde kjedereaksjonen gående. Et mål på hvor bra dette skjer i brenselet er breeding ratio, som er raten fissilt materiale produseres delt på raten det brukes. Hvis en reaktor lager mer fissilt materiale, fra det fertiel, enn det den bruker, sier man at reakoren "avler" (breeding).

Hvis 2 nøytroner blir frigitt per fisjon (som i gjennomsnitt er sant), er breeding i prinsippet mulig. Dessverre, som allerede nevnt, så taper man nøytroner som blir "spist opp" andre steder i reaktoren.

Greia med thorium, DEL II

Hei dere, her kommer del 2 av "påskekrimmen" jeg startet i går 🙂 DEL I kan lese her.

Kjernekraft - i går, i dag, og i morgen

Kjernekraft

I går

Den 2. desember 1942 gikk verdens aller første menneskelagde kjernereaktor - Chicago Pile no 1 - kritisk, under Enrico Fermis ledelse. 12 år etter dette, den 27. juni 1954, ble det produsert elektrisistet på Obnisk-kjernekraftverket i Russland - verdens første sivile kjernekraftverk. To tiår senere, i løpet av 1970-årene, ble det produsert 100 GW elektrisitet fra kjernekraft, og selv om det var de som var negativt innstilt til alt som hadde med atom å gjøre, så var majoriteten forholdsvis positiv. Dette holdt seg stort sett inntil Tsjernobyl-ulykken, som skjedde den 26. april 1986. En konsekvens av denne ulykken var at den virkelig fikk bremset ned den teknologiske utviklingen innen kjernekraft. Tsjernobyl satte ikke en stopp på kjernekraft som en del av verdens energimiks, men fikk altså virkelig saknet utviklingen av neste generasjons kjernekraftverk. I stedet for å erstatte gamle kjernekraftverk med ny og bedre teknologi, har heller dekommisjoneringsdatoene blitt kraftig forlenget, og forskning og utvikling utsatt.

Status i dag

Gjennomsnittlig befolkningsvekst er på ca 80 millioner per år. Verdens totale befolkning har gått fra 3.7 milliarder i 1970, til nesten 7.5 milliarder i 2016 (note: teksten ble skrevet i desember 2016 😉 ), og FN antar at vi kommer til på nå 10 milliarder mennesker i verden rundt 2050. Etter dette antar man også vekst, selv om den kommer til å skje saktere.

Med både flere mennesker, og økt energiforbruk per capita, antar man at det total energibehovet vil øke med rundt 50% fra 2012 til 2014. den største økningen skjer i Kina og India, som til sammen står for ca 50% av veksten.

 

Energisikkerhet defineres av IEA (International Energy Agency) som "uavbrutt tilgang til energikilder til en rimelig pris", og anses som helt grunnleggende for en sikker, stabil og fredelig verden. Det å skulle oppnå energisikkerhet for alle har dog vist seg vanskelig. CO2-utslippene våre har ført til en menneskeskapt klimaendring. I dag er den aller største kilden til energi fossil (olje, kull og gass) - hvilket bidrar til klimaendringer med sine store CO2-utslipp.

Ettersom frykten for klimaendringer har økt, og frykten for et nytt Tsjernobyl har minket, har kjernekraft igjen blitt en mulig løsning på den økte energietterspørselen. I FNs klimapanels siste rapport (no. 5, som ble publisert i 2014 - altså 3 år etter Fukushima-ulykken) blir kjernekraft trukket frem som en viktig del av en mulig løsning på menneskeskapte klimaendringer. De grupperer kjernekraft sammen med andre fornybare energikilder, som nøkkelelementer i et lavkarbons energisystem, sammen med CO2-fangst og -lagring (CCS). Spørsmålet "What are the main mitigation options in the energy supply sector?" besvares på følgende måte:

No single mitigation option in the energy supply sector will be sufficient (...) Achieving deep [cuts in greenhouse gas (GHG) emissions] will require more intensive use of low-GHG technologies such as renewable energy, nuclear energy, and carbon dioxide capture and storage (CCS). (Min understreking)

Klimapanelet foreslår at bruken av kjernekraft bør økes, og at denne energiformen kan erstatte den fossile baselasten (elektrisitet produsert med olje, gass, kull) mange steder i verden.

Per 2014 er det 440 kjernekraftverk i verden. Disse produserer ca 11% av all elektrisitet på verdensbasis.

I morgen

Hvis vi antar at anbefalingene til IPCC følges så vil det bli en utbygging av kjernekraft. Mer enn 60 reaktorer er under bygging (per januar 2017), og elektrisitetsprosuksjon fra kjernekraft er forvntet å øke proporsjonalt med den total elektrisitetsproduksjonen over de neste 20 årene. Denne utbyggingen vil mest sannsynlig hovedsakelig bestå av velkjent kjerneteknologi - det vil si GenerasjonIII(+) termiske reaktorer, som kjører på uran/plutonium-brenselssyklusen. Uten resirkulering av avfallet/(det brukte) brenselet vil uran, som en lett tilgjengelig og rimelig ressurs, etterhvert forsvinne. I tillegg vil man få bygget opp store mengder radioaktivt avfall. Thorium-brenselssyklusen kan være en del av løsningen på begge disse problemene:

Det fins mer thorium enn uran på Jorden, og selv om både uran- og thoriumbaserte brensel kan "avles" (breeding) - dermed gi opp til 200 ganger mer energi fra brenselet - ser public opinion ut til å være mer positiv når det gjelder thorium, fordi det er noe "nytt". Offentlig aksept, heller enn økonomi, er hovedbarrieren mot utvikling i Vesten. I Kina og India er folket stoltere av sine kjernefysiske prestasjoner, og det er en sterk støtte til kjernekraft. Videre utvikling av kjernekraft vil derfor i hovedsak skje i denne delen av verden. "Avl" eller nesten-"avl" (breeding) er dessuten mulig med termiske nøytroner i thoriumbasert brensel. I tillegg blir det produsert neglisjerbare mengde av plutonium fra thoriumbaserte brensel, sammenliknet med uranbaserte brensel, og det er mye vanskeligere å produsere våpen fra denne brenselssyklusen. Dersom thoriumbaserte brensel multi-resirkuleres kan hele avfallsproblematikken redusere meget kraftig.

 

Hei dere, nyter dere ferien (hvis dere har ferie)? Hvis dere jobber (som meg) så nyter dere kanskje at det er så utrolig mye mer stille og rolig enn det pleier - i alle fall er det sånn i Oslo! Jeg har ikke noe sånn forhold til påske og fjellet, så det at det er stille i byen, at snøen smelter (den gjorde i alle fall det i går 😉 ), og at Hestehoven begynner å titte frem (jeg har sett små løkskudd, så jeg krysser fingrene for at Hestehoven er her før påsken er over), det er dét som er påske for meg ♥

Men over til tittelen: Jeg har vel kanskje ikke krim, akkurat, men en liten føljetong tenkte jeg å ta her nå i påsken (ferie eller ei). Om 3 dager har jeg nemlig disputasjubileum, som betyr at jeg har kunnet kalle meg Dr. Rose i ett år, og det vil jeg markere med å dele litt fra doktorgradsavhandlingen min. De mest innfløkte detaljene fra oppgaven tror jeg ikke det er så mange som er her inne og leser som har interesse av, men introduksjonsdelen av den, der jeg snakker om kjernekraft og thorium - den er kanskje av interesse for flere...spesielt med tanke på at noen "likte meg bedre da jeg snakket om thorium" 😉 Jeg håper dere vil like det!

Greia med thorium, DEL1

Hvis du fulgte med i norske medier i årene mellom 2005 og 2008, var det nærmest umulig ikke å få med seg at det var mye snakk om thorium, thorium-brensel, og "thorium-reaktorer". Thorium ble fremstilt som "den nye kjernekraften"; noe som var helt annerledes, og mye bedre enn den "gamle", uranbaserte kjernekraften. Det ble dessuten også påstått at thorium kunne bli "Norges neste olje", siden et av verdens største thorium-reserver ligger i Norge.

Men gratis lunsj fins ikke. Thorium er ikke sendt fra oven - noe "gude-gitt", ei heller er det fienden. Hele kjernekraftdebatten er ofte, dessverre, veldig polarisert. Thorium er et grunnstoff som, under de riktige omstendighetene, kan bli gjort om til den helt utmerkede fissile (spaltbare) kjernen uran-233, og på grunn av egenskapene til denne uran-isotopen, kan det hele bli bedre enn tradisjonelt uran-basert brensel. Dog er det ikke himmel og jord i forskjell på thorium-brenselssyklusen og uran- og uran/plutonium-brenselssyklusen. Thorium-brenselsyklusen er et spesialtilfelle av den mer generelle brenselsyklusen for kjernekraft, som altså kan ha noen veldig positive sider ved seg:

  • under de rette forutsetningene kan reaktorer som bruker thorium-baserte brensel produsere mye mindre langlivet, radioaktivt avfall
  • det fins mer thorium på jorden enn uran (ca 4 ganger så mye)
  • det blir så å si ikke produsert plutonium fra thorium-baserte brensel - noe som kan være positivt med tanke på public opinion
  • det er en mulighet for å få til breeding, eller nesten-breeding (breeding betyr at man produserer mer fissilt materiale enn det man bruker - det høres nesten ut som evighetsmaskin, bare at det ikke er det, og at det er sant 🙂 ), i et termisk nøytronspektrum
  • det er vanskeligere å produsere våpen fra thorium enn fra uran eller plutonium, fordi den fissile uran-233 alltid vil være forurenset av uran-232, som gir fra seg gamma-stråling med veldig høy energi (som gjør det nærmest umulig å lage våpen av)

To av de største utfordringene i vår tid er energi-sikkerhet og klimaendringer. Vi trenger tilgang til nok, rimelig og pålitelig energi, og vi trenger å produsere denne uten CO2-utslipp (eller så nært det lar seg gjøre). Thorium som brensel i kjernekraftverk kan være en (viktig) brikke i løsningen på disse utfordringene.


...og sånn lyder altså introduksjonen (de 2 første sidene) av doktorgradsavhandlingen min 🙂

I morgen kommer DEL 2, med en liten historisk gjennomgang av kjernekraft i går og i dag.

 

 

Hei dere, da er en ny uke allerede ordentlig godt i gang, og jeg syns ikke noenting passer bedre enn å følge opp dette med stråling og myter - som jeg også har lovet at jeg skulle gjøre (se, hun holder det hun lover :P). Det begynte med dette foreadraget/innlegget, der jeg kun delte 6 av de 10 mytene fra foredraget, fordi de 4 siste syntes jeg trengte litt mer enn bare to/tre setninger. (Ikke for det: De 6 i innlegget kan sikkert også gjerne få litt mer utfyllende informasjon - gi et pip, eller rop ut, hvis det er noe du vil høre mer om 🙂 )

Her kommer det en oppfølging som faktisk ikke er en av de 4 ekstra mytene (de kommer de også), men snarere en bonus for å forstå mer av det som er myter og det som er fakta.

Greia med stråling er man må følge strålevernsregler, og det aller mest grunnleggende innen strålevern er det såkalte ALARA-prinsippet, som høres sånn ut:

Stråledoser skal holdes «Så Lavt Som Rimelig Mulig» - ALARA-prinsippet. (ALARA står for As Low As Reasonably Achieveable)

Dette betyr rett og slett at de grensene man har for stråledoser ikke er satt etter "så høyt som det er trygt" (som man kanskje gjerne tenker seg), men altså "så lavt som rimelig mulig". Det er selvsagt en stor og viktig forskjell, som jeg tror veldig mange (de fleste, kanskje?) ikke er klar over. Man har på en måte bestemt seg for at stråledoser alltid skal minimeres så mye som mulig, uansett om man er milevis unna noe som kunne begynne å være farlig på noe som helst vis 🙂

Når jeg feks skal være med på plutoniumseksperiment om ca en måned (jeg gleder meg VILT; det er en direkte oppfølging av den siste artikkelen i doktorgaden min, der vi forhåpentligvis får bekreftet de resultatene vi fikk da - nå har labben nemlig fått nytt og mye mer nøyaktig utstyr) så har jeg lov til å bli utsatt for 20 ganger mer stråling (20 millisievert), enn det en «privatperson» har lov til (1 millisievert). Hvis det av en eller annen grunn skulle være nødvendig (det kommer ikke til å skje på labben her på Blindern; her har jeg aldri fått en stråledose som er stor nok til at den har vært målbar en gang med de dosimetrene vi bruker) kan jeg motta en dose som er 50 ganger høyere enn det en privatperson ifølge lovverket har anledning til, i løpet av ett år. Dette er absolutt ikke fordi jeg er superwoman, som tåler 50 ganger større påkjenninger enn en hvilken som helst annen person, eller at jeg ikke bryr meg om min egen helse og ofrer alt for vitenskapen. (Altså, jeg elsker stort sett forskningen, men jeg er ikke interessert i å korte ned min forventede levealder av den grunn).

Årsaken til at jeg og mine kolleger har andre dosegrenser enn resten av befolkningen er nettopp ALARA: For befolkningen generelt er det enkelt og greit å si at de nesten ikke skal motta noen ekstra stråledose, mens for de som er yrkesutsatte så er dette veldig upraktisk. Dosegrensene er altså satt så lavt som rimelig mulig – uten at det er noen grunn til å vente at for eksempel dobbel dose vil være skadelig, eller til og med 10 ganger så stor dose.

Min ville gjetning er at dersom en privatperson hadde fått en stråledose på 50 millisievert så ville avisforsidene hatt overskrifter omtrent som dette: «KVINNE MOTTOK 50 GANGER HØYERE STRÅLEDOSE ENN ALARMGRENSEN!», og de ville sikkert solgt godt den dagen. (Det hele ville selvsagt ha vært komplett med et festlig radioaktivitetstegn inne i O-en i "ATOM" - noen ganger er folk så utrolig forutsigbare.) I virkeligheten betyr det «bare» at hun har fått den samme stråledosen som jeg kunne ha fått på et år, uten at det hadde vært noe voldsomt spesielt med dét.


 

 

9

I går var jeg på Nettverkssamlingen i realfag i Trøndelag (nå: Det ene fylket som heter Trøndelag, det fins ikke noe Sør- og Nord-Trøndelag lenger #samfunnsfagsfakta) og hokdt tre foredrag, for 300 realfagslærere. Det som er veldig gøy med det er at hvis hver lærer har 150 elever i snitt hvert å (og gitt at jeg når igjennom til hver lærer - det gjør jeg sikkert ikke, men forhåpentligvis ganske mange av dem 🙂 ) så betyr det at jeg indirekte er med å påvirke ganske mange elever, sånn bittelitt ♥

Det ene foredraget jeg holdt het 10 myter om stråling, og jeg tenkte jeg skulle ta noen av dem her:

Strålingen kommer og tar deg. "Stråling" høres litt mystisk og magisk ut, men den kommer fra et eller annet stoff, og med litt kunnskap er det ikke vanskeligere å beskytte seg mot enn alle mulige nadre stoffer man ønsker å beskytte seg mot. Det er latså ikke sånn "you can't hide".

♥ Stråling er farlig – uansett – og nedfallet fra Tsjernobyl vil gi 500 ekstra kreftdødsfall i Norge. Lave doser av stråling ser ikke ut til å være farlig, og det fins ganske mye forskning som peker mot at lave stråledoser til og med kan være bra for oss (Google "hormese" eller "hormesis"). Å "regne seg frem til" at det blir 500 ekstra kreftdødsfall i Norge pga Tsjernobyl er 100% useriøst og uetisk.

♥ Utslippet av (radioaktivt) cesium fra Tsjernobyl-ulykken tilsvarer 100 Hiroshima-bomber. Det kan godt hende at det stemmer, men det er en ganske uinteressant opplysing. Dette utsagnet prøver å få oss til å tenke at Tjsernobyl er som 100 Hiroshima-bomber, noe som selvsagt ikke stemmer. Saken er at det som dreper i en atombombe-eksplosjon er hovedsakelig selve sprengkraften og den enorme varmen som produseres, og ikke cesium. Et annet poeng er at man ikke får dannet akkurat de samme stoffene når en atombombe eksploderer som man får i brensleet i et kjernekraftverk - utsagnet kan like gjerne bety "i en atombombe blir det produsert veldig lite cesium sammenliknet med i et kjernekraftverk".

♥ Flere millioner mennesker kommer til å dø som en følge av utslippene fra Tsjernobylulykken. Nei. Under 100 døde som en direkte konsekvens av strålingen, og de aller fleste har fått forholdsvis lave stråledoser etter Tsjernobyl, og trenger ikke leve i frykt pga dette. Man tenker seg at det kanskje vil bli 6000 ekstra kreftdødsfall pga ulykken - som absolutt er 6000 for mange, men ikke i nærheten av millioner, som jeg har sett enkelte påstå.

♥ Etter Fukushima-ulykken var det farlig å være i Tokyo pga høye strålenivåer. Nei. Selv da det var på det høyeste strålenivået i Tokyo, etter Fukushima-ulykken, var det lavere strålenivåer der enn det det er i feks Oslo hele tiden. Norge flyttet ambassaden sin vekk fra Tokyo under ulykken - hvis Japan skulle hatt samme "sikkerhetsmarginer" på sin ambassade i Norge, måtte de ha flyttet ambassaden sin ut av landet.

♥ Valget mellom kull eller kjernekraft er som å velge mellom pest eller kolera. Nei, det er jo ikke det. Hvis du feks sammenlikner dødsfall per terawattime produsert energi så er kull DESIDERT verst (161 døde/TWh), mens kjernekraft kommer ut bedre enn til og med vannkraft (0.04 døde/TWh). Fra kull får man utslipp av CO2, svovel, svevestøv...dessuten er asken som produseres fra et kullkraftverk radioaktiv. Faktisk får du en høyere stråledose ved å bo i nærheten av et kullkraftverk enn det du får ved å bo i nærheten av et kjernekraftverk. Et kjernekraftverk ville blitt stengt på dagen (etterfulgt av store overskrifter i avisene) hvis det hadde utslipp av radioaktive stoffer på samme måte som kullkraftverk har hele tiden.

Grunnen til at jeg ikke tar alle 10 mytene er at noen av dem krever litt mer skriving enn det jeg har gjort på hver av disse punktene. Hvis det er interesse for at jeg skal dele resten, så er det bare å rope ut, så skal jeg se hva jeg kan få til 🙂


Under er Trondheims-turen i bilder (i alle fall dag 1: fra Oslo til Trondheim), litt sånn time for time ♥

Tidlig morgen, hjemme, i sminkeprosessen.

 

Etter sminke, klar for Trondheim.

 

Alt man trenger å ha med for et døgn i Trondheim (nei, jeg kan ikke vite hva jeg kommer til å ville ha på meg på scenen dagen etter).

 

Kl 9: På kontoret først, siden flyet ikke går før på ettermiddagen.

 

Jobber med foredrag nummer to.

 

Jobber med foredrag nummer tre.

 

Kaffe!

 

Te... Jeg prøver å variere litt, så det ikke blir så iiiinmari mange kaffekopper i løpet av en dag, og så syns jeg Pukka-teene er veldig fine - jeg blir litt glad av eskene, faktisk 🙂

 

Kl 14: Setter nesen mot Gardermoen.

 

Elsker den roen jeg får etter å ha sjekket inn, når jeg har godt med tid før flyet går, selvsagt. Setter meg ned med et glass vin, og boken til Henrik - et sånt tilfelle der vin og jobb faktisk kan være i skjønn forening 😉

 

Siste jobb på foredrag 2 på flyet. Sitat fra den siste rapporten til FNs klimapanel.

 

Kl 1930: Fremme!

 

Det. Er. Så. FANTASTISK. DEILIG. Å kjenne solen varme ansiktet, og  se den faktisk smelte snø og is. Himmel! Selv om Anders dro til LA i dag, som selvsagt gjør meg litt trist (hvor ble det av superselvstendige Sunniva, egentlig? Kanskje hun egenltig aldri fantes – og bare dukket opp midlertiidg, da det var absolutt nødvendig...?) så blir jeg så mye mer glad av solen og «varmen», at totalen i dag helt klart er positiv. I skrivende strund er Anders i en Dreamliner et eller annet sted over Atlanteren, og jeg sitter hjemme ved spisebordet vårt. Som nevnt i går er jeg kjempestolt av han – han er virkelig helt fantastisk dyktig (i tillegg til å være snill, kjærlig, og en super stepappa).

Men apropos solen: Jeg fikk tilsendt et bilde på mail her om dagen, med spørsmålet vil du kalle dette fisjon eller fusjon? Jeg trodde først at dette var fra en elev som ville ha meg til å gjøre leksene for seg (det skjer nemlig, og det er selvsagt helt uaktuelt), så jeg svarte rett og slett du ser vel hva som står skrevet?

Så fikk jeg svar tilbake

Jo men akkurat i dette trinnet, omdannes jo helium til helium, og to lettere grunnstoffer. Dette er jo definisjonen på fisjon?

Tenkte at dette er jo et kjempebra spørsmål, og svaret er at nei, dette er ikke fisjon – det er bare et trinn i fusjonsprosessen. Det som skjer her er at du helt riktig har to helium-kjerner, som blir til en ny heliumkjerne, men denne er tyngre - to lette kjerner har gått over til å bli en tyngre, altså. Samtidig blir det to protoner (hydrogen-1, som er det som vises her, er kun ett proton) til overs. Dette er en del av fusjonsprosessen, og ikke en egen prosess der du feks har helium som deler seg i to og blir hydrogen - da ville jeg vært enig i at det var fisjon 🙂

Totalen her er at to lettere kjerner smelter sammen (fusjonerer) til å bli én tyngre kjerne, pluss to overskuddsprotoner.

Energien som kommer her i denne reaksjonen er fra nettopp fusjonen av lett helium til tyngre helium, og ikke fra helium som splitter seg til protoner - for den reaksjonen gir på ingen måte energi. Den koster energi. Hvis man har en kjerne som er så tung som uran (eller egentlig noe som er tyngre enn jern) så kan man  energi på å fisjonere (spalte i to).


Ga dette svaret noen mening? Eller, altså, svaret er at dette er fusjon, og det er jo greit nok, men ga forklaringen noen mening...?

Uansett så håper alle har nytt denne dagen like mye som meg ♥

2

Siden jeg gikk litt nedover memory lane i går ble det til at jeg tok fram avhandlingen min, og jeg fikk lyst til å dele et bittelite utdrag fra den - oversatt til norsk (bortsett fra kapitteloverskiften 🙂 ). Det som står i patenteser er lagt til nå, for å forklare ting som kanskje ikke er 100% tydelig for alle.

The bridge between nuclear experiments and reactor simulations

Eksperimentell reaktorfysikk (det å faktisk gjøre eksperimenter med en reaktor) er både dyrt og vanskelig å gjennomføre; fordi man trenger arbeidskraft, eksperimentelle fasiliteter (veldig dyrt!), og det faktum at dette tar tid å gjennomføre (skal du teste hvordan brenselet utvikler seg over tre år i en reaktor så tar det faktisk tre år å gjennomføre 😉 ). I tillegg er det veldig vanskelig å faktisk eksperimentelt teste hvordan en reaktor (eller brensel) oppfører seg hvis det skjer en ulykke - som er det man gjerne vil vite. En av verdens ledende fasiliteter på sikkerhetstesting av brensel ligger i Norge; Halden-reaktoren. I denne reaktoren tester de hvordan brenselet oppfører seg i ulykkesscenarier som feks tap av kjøling, men disse testene tar veldig mye tid.

Men, takket være utviklingen av datamaskiner, som har foregått de siste 40-50 årene, har det blitt sånn at reaktorfysikk baserer seg mer og mer på datasimuleringer, enn på faktiske eksperimenter.

Det verste, og mest "spektakulære" eksempelet på en feilslått sikkerhetstest var Tsjernobyl-ulykken i 1986. Her skulle de teste hvordan hovedpumpenen oppførte seg hvis reaktoren mistet tilgang på strøm. Den type test, som altså førte til denne ulykken, burde aldri gjøres i virkeligheten - men kan (og bør!)  gjøres i den virtuelle verden (datasimuleringer).

Jeg valgte å definere det arbeidet (jeg studerte hvordan en type thoriumbrensel oppfører seg etter tre år i en ganske standard reaktor - hvor mye radioaktivt avfall man får, feks) jeg gjorde på datamaskinen som numerimenter. Grunnen til det er at det man faktisk gjør er et eksperiment, bare at det skjer på datamaskinen, og ikke i en labb. Et numeriment er altså et numerisk eksperiment på en datamaskin; det kan bestå av mange simuleringer som gir data, og den videre analysen av disse - akkurat som ved et klassisk eksperiment 🙂 Så vær så god: Dette ordet funker på både norsk og engelsk, og kan brukes på akkurat samme måte som eksperiment; feks skrve jeg både om eksperimentelt oppsett (for jeg gjorde jo også eksperimenter), og numerimentelt oppsett, som forklarte hvordan jeg simulerte brenselet.

 


Ellers har jeg fått skikkelig skrivedilla nå - endelig! Det er bokskriving det går i, både i går og i dag...det kan virke som om jeg omsider (heldigvis!) er klar for et nytt, stort prosjekt, ett år etter at jeg leverte det forrige fra meg ♥

Hei hopp og kveld fra den okergule stolen i Roseslottet 🙂 Jeg følte liksom at jeg ikke var helt ferdig med energi og fisjon og sånn i forrige innlegg, jeg... For hva slags energi er det egentlig snakk om når en tung kjerne deler seg i to?

Her får dere en oversikt over nettopp energien som blir frigjort i fisjon ♥


Når uran-235 fisjonerer (spaltes) så kan den dele seg på mange forskjellige måter, men en typisk måte den gjør det på er at den blir truffet av et nøytron, og så blir den til rubidium-93 og cesium-141 og 2 nøytroner. Som jeg sa på søndag så er det sånn at masse kan bli til energi, og så sa jeg at når en kjerne fisjonerer så er det nettopp slik at noe av massen ("vekten") faktisk blir gjort om til energi. For å se at det stemmer så må vi vite hva alle disse tingene veier før og etter at fisjonen skjer.

Før fisjon så har vi massen til uran-235 og ett nøytron, og etter fisjon så blir det massen til rubidium-93 og cesium-141 og to nøytroner. Ett nøytron veier \(1.675 \cdot 10^{-27}\) kg og uran-235 veier \(390.173 \cdot 10^{-27}\) kg, til sammen veier de \(391.848 \cdot 10^{-27}\) kg. Rubidium-93 veier \(154.248 \cdot 10^{-27}\) kg, cesium-141 veier \(233.927 \cdot 10^{-27}\) kg, og med to nøytroner blir massen \(391.525 \cdot 10^{-27}\) kg til sammen. Vi ser det allerede nå: Det er ikke samme vekt før og etter at uranet har delt seg, og selv om forskjellen ikke er stor så er den superviktig. Forskjellen på massen før og etter \(391.848 \cdot 10^{-27}-391.525 \cdot 10^{-27}=0.323 \cdot 10^{-27}\)kg.

Nå som vi vet hvor stor masse som har blitt "borte" når uranet fisjonerte kan vi bruke Einsteins formel og regne ut hvor mye energi man får når dette skjer:

E =\(0.323 \cdot 10^{-27} \cdot 3\cdot10^8\cdot3\cdot10^8\) = \(2.907 \cdot 10^{-11} \)Joule.

Det er ikke mye energi på bare ett atom, men så er det ganske mange fler enn bare ett atom som fisjonerer hvert eneste sekund også, da 😉 Hvis man sammenlikner den energien man får fra én sånn fisjonsreaksjon så er den ca 10-50 MILLIONER ganger større enn den energien man får når man feks brenner kull!

(Dette bildet har selvsagt ingenting med saken å gjøre, men jeg syns det er et skikkelig "vakkert" bilde av Anders og meg, som minner meg om favorittårstiden og et av mine favorittsteder i hele verden ♥ Dessuten så er det bilde av noe som brenner, som altså gir VELDIG mye mindre energi enn fisjon :))


Energien som kommer fra fisjon blir brukt på at fisjonproduktene  (i dette tilfellet er det rubidium og cesium) og nøytronene fyker fra hverandre, gammastråling i fisjonsøyeblikket (som jeg jobbet med i doktograden 😀 ), antinøytrinoer, betastråling fra fisjonsproduktene (disse er som regel veldig radioaktive), og gammastråling fra fisjonsproduktene. Størstedelen av energien går til å få fisjonproduktene til å fyke fra hverandre (70-80% av den total energien).

Og sånn er det. Håper dere ble enda litt klokere på både Einsteins berømte likning, og fisjon ♥